Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7

Existing pavement defect detection models face challenges in balancing detection accuracy and speed while being constrained by large parameter sizes, hindering deployment on edge terminal devices with limited computing resources. To address these issues, this paper proposes a lightweight pavement de...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 16; p. 7112
Main Authors Huang, Peile, Wang, Shenghuai, Chen, Jianyu, Li, Weijie, Peng, Xing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23167112

Cover

More Information
Summary:Existing pavement defect detection models face challenges in balancing detection accuracy and speed while being constrained by large parameter sizes, hindering deployment on edge terminal devices with limited computing resources. To address these issues, this paper proposes a lightweight pavement defect detection model based on an improved YOLOv7 architecture. The model introduces four key enhancements: first, the incorporation of the SPPCSPC_Group grouped space pyramid pooling module to reduce the parameter load and computational complexity; second, the utilization of the K-means clustering algorithm for generating anchors, accelerating model convergence; third, the integration of the Ghost Conv module, enhancing feature extraction while minimizing the parameters and calculations; fourth, introduction of the CBAM convolution module to enrich the semantic information in the last layer of the backbone network. The experimental results demonstrate that the improved model achieved an average accuracy of 91%, and the accuracy in detecting broken plates and repaired models increased by 9% and 8%, respectively, compared to the original model. Moreover, the improved model exhibited reductions of 14.4% and 29.3% in the calculations and parameters, respectively, and a 29.1% decrease in the model size, resulting in an impressive 80 FPS (frames per second). The enhanced YOLOv7 successfully balances parameter reduction and computation while maintaining high accuracy, making it a more suitable choice for pavement defect detection compared with other algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167112