Pattern Matching for Real-Time Extraction of Fast and Slow Spectral Components From sEMG Signals
Previous studies have demonstrated the potential of surface electromyography (sEMG) spectral decomposition in evaluating muscle performance, motor learning, and early diagnosis of muscle conditions. However, decomposition techniques require large data sets and are computationally demanding, making t...
        Saved in:
      
    
          | Published in | IEEE Transactions on Neural Systems and Rehabilitation Engineering Vol. 31; pp. 3587 - 3596 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2023
     Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1534-4320 1558-0210 1558-0210  | 
| DOI | 10.1109/TNSRE.2023.3311037 | 
Cover
| Summary: | Previous studies have demonstrated the potential of surface electromyography (sEMG) spectral decomposition in evaluating muscle performance, motor learning, and early diagnosis of muscle conditions. However, decomposition techniques require large data sets and are computationally demanding, making their implementation in real-life scenarios challenging. Based on the hypothesis that spectral components will present low inter-subject variability, the present paper proposes the foundational principles for developing a real-time system for their extraction by utilizing a pre-defined library of components derived from an extensive data set to match new measurements. The model library was tailored to fulfill specific requirements for real-time system application and the challenges encountered during implementation are discussed in the paper. For system validation, four distinct data sets comprising isotonic and isometric muscle activations were utilized. The extracted during validation showed low inter-subject variability, suggesting that a wide range of physiological variations can be described with them. The adoption of the proposed system for muscle analysis could provide a deeper understanding of the underlying mechanisms governing different motor conditions and neuromuscular disorders, as it allows for the measurement of these components in various daily-life scenarios. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 1534-4320 1558-0210 1558-0210  | 
| DOI: | 10.1109/TNSRE.2023.3311037 |