Gene-set integrative analysis of multi-omics data using tensor-based association test

Abstract Motivation Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently analyzing these data to discover novel disease genes or me...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 37; no. 16; pp. 2259 - 2265
Main Authors Chang, Sheng-Mao, Yang, Meng, Lu, Wenbin, Huang, Yu-Jyun, Huang, Yueyang, Hung, Hung, Miecznikowski, Jeffrey C, Lu, Tzu-Pin, Tzeng, Jung-Ying
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.08.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btab125

Cover

More Information
Summary:Abstract Motivation Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently analyzing these data to discover novel disease genes or mechanisms. A common strategy is to regress the outcomes on all omics variables in a gene set. However, this approach suffers from problems associated with high-dimensional inference. Results We introduce a tensor-based framework for variable-wise inference in multi-omics analysis. By accounting for the matrix structure of an individual’s multi-omics data, the proposed tensor methods incorporate the relationship among omics effects, reduce the number of parameters, and boost the modeling efficiency. We derive the variable-specific tensor test and enhance computational efficiency of tensor modeling. Using simulations and data applications on the Cancer Cell Line Encyclopedia (CCLE), we demonstrate our method performs favorably over baseline methods and will be useful for gaining biological insights in multi-omics analysis. Availability and implementation R function and instruction are available from the authors’ website: https://www4.stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ISSN:1367-4803
1367-4811
1367-4811
DOI:10.1093/bioinformatics/btab125