Distinguish Dianthus species or varieties based on chloroplast genomes

Most plants belonging to the widely distributed genus are used for gardening. Interspecific hybridization of different species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among species, the chloroplast genomes of 12 species, in...

Full description

Saved in:
Bibliographic Details
Published inOpen life sciences Vol. 18; no. 1; pp. 20220772 - 31
Main Authors Meng, Dong, Yang, Liu, Yunlin, Zhao, Guiyan, Yang, Shuwen, Chen, Zhenggang, Xu
Format Journal Article
LanguageEnglish
Published De Gruyter 28.11.2023
Subjects
Online AccessGet full text
ISSN2391-5412
2391-5412
DOI10.1515/biol-2022-0772

Cover

Abstract Most plants belonging to the widely distributed genus are used for gardening. Interspecific hybridization of different species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among species, the chloroplast genomes of 12 species, including nine varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474–149,735 bp), with having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of , we identified 124–126 annotated genes, including 83–84 protein-coding genes. Notably, had 83 protein-coding genes but lacked . The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of indicated that and were most closely related, suggesting that the degree of variation within nine varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within species.
AbstractList Most plants belonging to the widely distributed genus are used for gardening. Interspecific hybridization of different species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among species, the chloroplast genomes of 12 species, including nine varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474–149,735 bp), with having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of , we identified 124–126 annotated genes, including 83–84 protein-coding genes. Notably, had 83 protein-coding genes but lacked . The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of indicated that and were most closely related, suggesting that the degree of variation within nine varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within species.
Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among Dianthus species, the chloroplast genomes of 12 Dianthus species, including nine Dianthus gratianopolitanus varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474–149,735 bp), with Dianthus caryophyllus having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of Dianthus, we identified 124–126 annotated genes, including 83–84 protein-coding genes. Notably, D. caryophyllus had 83 protein-coding genes but lacked rpl2. The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of Dianthus indicated that D. caryophyllus and D. gratianopolitanus were most closely related, suggesting that the degree of variation within nine Dianthus varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within Dianthus species.
Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among Dianthus species, the chloroplast genomes of 12 Dianthus species, including nine Dianthus gratianopolitanus varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474–149,735 bp), with Dianthus caryophyllus having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of Dianthus , we identified 124–126 annotated genes, including 83–84 protein-coding genes. Notably, D. caryophyllus had 83 protein-coding genes but lacked rpl2 . The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of Dianthus indicated that D. caryophyllus and D. gratianopolitanus were most closely related, suggesting that the degree of variation within nine Dianthus varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within Dianthus species.
Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among Dianthus species, the chloroplast genomes of 12 Dianthus species, including nine Dianthus gratianopolitanus varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474-149,735 bp), with Dianthus caryophyllus having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of Dianthus, we identified 124-126 annotated genes, including 83-84 protein-coding genes. Notably, D. caryophyllus had 83 protein-coding genes but lacked rpl2. The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of Dianthus indicated that D. caryophyllus and D. gratianopolitanus were most closely related, suggesting that the degree of variation within nine Dianthus varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within Dianthus species.Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among Dianthus species, the chloroplast genomes of 12 Dianthus species, including nine Dianthus gratianopolitanus varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474-149,735 bp), with Dianthus caryophyllus having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of Dianthus, we identified 124-126 annotated genes, including 83-84 protein-coding genes. Notably, D. caryophyllus had 83 protein-coding genes but lacked rpl2. The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of Dianthus indicated that D. caryophyllus and D. gratianopolitanus were most closely related, suggesting that the degree of variation within nine Dianthus varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within Dianthus species.
Author Guiyan, Yang
Zhenggang, Xu
Meng, Dong
Yang, Liu
Yunlin, Zhao
Shuwen, Chen
Author_xml – sequence: 1
  givenname: Dong
  surname: Meng
  fullname: Meng, Dong
  organization: Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
– sequence: 2
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  organization: Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
– sequence: 3
  givenname: Zhao
  surname: Yunlin
  fullname: Yunlin, Zhao
  organization: Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
– sequence: 4
  givenname: Yang
  surname: Guiyan
  fullname: Guiyan, Yang
  organization: College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China
– sequence: 5
  givenname: Chen
  surname: Shuwen
  fullname: Shuwen, Chen
  organization: College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China
– sequence: 6
  givenname: Xu
  surname: Zhenggang
  fullname: Zhenggang, Xu
  email: xuzhenggang@nwafu.edu.cn
  organization: College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi, China
BookMark eNqFkU1v1DAQhiNUJErplXOOXNLajpPYJ4RaCpUq9QJna-xMsl557WA7Rfvvm5AKUaSqJ48_3mdGj98XJz54LIqPlFzQhjaX2gZXMcJYRbqOvSlOWS1p1XDKTv6p3xXnKe0JIbThrCHtaXFzbVO2fpxt2pXXFnzezalMExqLqQyxfIBoMa8bDQn7MvjS7FyIYXKQcjmiDwdMH4q3A7iE50_rWfHz5uuPq-_V3f2326svd5XhgueqFgahZQPn1KCUyHoDtGXaUN3zrhND35q27zkxTGDdMCE0CNMxrmWnu0HXZ8Xtxu0D7NUU7QHiUQWw6s9BiKOCmK1xqIaua4e61guHc8OZrqVgclEhAJgk9cK63Fizn-D4G5z7C6RErVbValWtVtVqdUl83hLTrA_YG_Q5gns2xvMbb3dqDA8LrxUNJ3IhfHoixPBrxpTVwSaDzoHHMCfFhGwF4ZSvzS62pyaGlCIOr0_H_wsYmyHbsM5i3csxucUWAxljj2Ocj0uh9mGOfvnMF4JU0PoR7hfGMw
CitedBy_id crossref_primary_10_48077_scihor10_2024_136
Cites_doi 10.1186/1471-2164-13-292
10.3389/fpls.2020.00375
10.1073/pnas.1430924100
10.1186/s12864-022-08706-2
10.3389/fpls.2017.00530
10.1186/1471-2164-12-402
10.7717/peerj.7210
10.1093/nar/29.22.4633
10.3389/fpls.2017.01986
10.3389/fgene.2020.00073
10.1016/j.mib.2014.09.008
10.1038/30234
10.1093/nar/gkh458
10.1186/s12870-015-0432-6
10.1016/j.indcrop.2022.115408
10.1093/bioinformatics/btp187
10.1186/s12862-021-01800-1
10.1093/molbev/msw054
10.1016/j.phytol.2016.04.020
10.1016/j.indcrop.2021.114210
10.1016/j.imr.2015.06.004
10.1016/j.indcrop.2023.116974
10.1016/j.scienta.2008.04.001
10.1007/s11105-016-1010-2
10.1016/j.indcrop.2023.116674
10.1371/journal.pone.0111988
10.1016/j.plantsci.2004.04.029
10.1002/ece3.1611
10.1093/bioinformatics/btx198
10.1007/s11738-020-03089-x
10.1080/23802359.2018.1521313
10.1073/pnas.92.17.7759
10.1016/j.indcrop.2021.113248
10.3390/ijms22116143
10.1007/s11104-015-2396-6
10.1093/nar/gkz238
10.1016/j.plaphy.2023.107698
10.1007/s00606-007-0608-0
10.1093/jhered/92.4.371
ContentType Journal Article
Copyright 2023 the author(s), published by De Gruyter.
2023 the author(s), published by De Gruyter 2023 the author(s), published by De Gruyter
Copyright_xml – notice: 2023 the author(s), published by De Gruyter.
– notice: 2023 the author(s), published by De Gruyter 2023 the author(s), published by De Gruyter
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1515/biol-2022-0772
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2391-5412
EndPage 31
ExternalDocumentID oai_doaj_org_article_f776f33be3544c42b398292398aa2903
10.1515/biol-2022-0772
PMC10685409
10_1515_biol_2022_0772
10_1515_biol_2022_0772181
GroupedDBID 5VS
AAFWJ
ABFKT
ACGFS
ADBBV
AENEX
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
ECGQY
GROUPED_DOAJ
KQ8
M~E
PGMZT
QD8
RPM
Y2W
AAYXX
CITATION
7X8
5PM
ADTOC
AIKXB
EJD
IPNFZ
M48
RIG
SLJYH
UNPAY
ID FETCH-LOGICAL-c484t-38cea62f441ce99e2dca162bc1bd4778fd6c6dd40c28e35288ba8c724b97b7fb3
IEDL.DBID DOA
ISSN 2391-5412
IngestDate Fri Oct 03 12:51:58 EDT 2025
Sun Oct 26 02:58:06 EDT 2025
Tue Sep 30 17:17:55 EDT 2025
Thu Jul 10 21:55:56 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Wed Oct 01 05:04:27 EDT 2025
Sat Sep 06 16:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-38cea62f441ce99e2dca162bc1bd4778fd6c6dd40c28e35288ba8c724b97b7fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/f776f33be3544c42b398292398aa2903
PQID 2896804142
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f776f33be3544c42b398292398aa2903
unpaywall_primary_10_1515_biol_2022_0772
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10685409
proquest_miscellaneous_2896804142
crossref_primary_10_1515_biol_2022_0772
crossref_citationtrail_10_1515_biol_2022_0772
walterdegruyter_journals_10_1515_biol_2022_0772181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-28
  day: 28
PublicationDecade 2020
PublicationTitle Open life sciences
PublicationYear 2023
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2023112806105331113_j_biol-2022-0772_ref_040
2023112806105331113_j_biol-2022-0772_ref_020
2023112806105331113_j_biol-2022-0772_ref_021
2023112806105331113_j_biol-2022-0772_ref_022
2023112806105331113_j_biol-2022-0772_ref_001
2023112806105331113_j_biol-2022-0772_ref_023
2023112806105331113_j_biol-2022-0772_ref_002
2023112806105331113_j_biol-2022-0772_ref_024
2023112806105331113_j_biol-2022-0772_ref_003
2023112806105331113_j_biol-2022-0772_ref_025
2023112806105331113_j_biol-2022-0772_ref_004
2023112806105331113_j_biol-2022-0772_ref_026
2023112806105331113_j_biol-2022-0772_ref_005
2023112806105331113_j_biol-2022-0772_ref_027
2023112806105331113_j_biol-2022-0772_ref_006
2023112806105331113_j_biol-2022-0772_ref_028
2023112806105331113_j_biol-2022-0772_ref_007
2023112806105331113_j_biol-2022-0772_ref_029
2023112806105331113_j_biol-2022-0772_ref_008
2023112806105331113_j_biol-2022-0772_ref_009
2023112806105331113_j_biol-2022-0772_ref_030
2023112806105331113_j_biol-2022-0772_ref_031
2023112806105331113_j_biol-2022-0772_ref_010
2023112806105331113_j_biol-2022-0772_ref_032
2023112806105331113_j_biol-2022-0772_ref_011
2023112806105331113_j_biol-2022-0772_ref_033
2023112806105331113_j_biol-2022-0772_ref_012
2023112806105331113_j_biol-2022-0772_ref_034
2023112806105331113_j_biol-2022-0772_ref_013
2023112806105331113_j_biol-2022-0772_ref_035
2023112806105331113_j_biol-2022-0772_ref_014
2023112806105331113_j_biol-2022-0772_ref_036
2023112806105331113_j_biol-2022-0772_ref_015
2023112806105331113_j_biol-2022-0772_ref_037
2023112806105331113_j_biol-2022-0772_ref_016
2023112806105331113_j_biol-2022-0772_ref_038
2023112806105331113_j_biol-2022-0772_ref_017
2023112806105331113_j_biol-2022-0772_ref_039
2023112806105331113_j_biol-2022-0772_ref_018
2023112806105331113_j_biol-2022-0772_ref_019
References_xml – ident: 2023112806105331113_j_biol-2022-0772_ref_001
  doi: 10.1186/1471-2164-13-292
– ident: 2023112806105331113_j_biol-2022-0772_ref_010
  doi: 10.3389/fpls.2020.00375
– ident: 2023112806105331113_j_biol-2022-0772_ref_015
  doi: 10.1073/pnas.1430924100
– ident: 2023112806105331113_j_biol-2022-0772_ref_020
  doi: 10.1186/s12864-022-08706-2
– ident: 2023112806105331113_j_biol-2022-0772_ref_008
  doi: 10.3389/fpls.2017.00530
– ident: 2023112806105331113_j_biol-2022-0772_ref_033
  doi: 10.1186/1471-2164-12-402
– ident: 2023112806105331113_j_biol-2022-0772_ref_034
  doi: 10.7717/peerj.7210
– ident: 2023112806105331113_j_biol-2022-0772_ref_035
  doi: 10.1093/nar/29.22.4633
– ident: 2023112806105331113_j_biol-2022-0772_ref_004
  doi: 10.3389/fpls.2017.01986
– ident: 2023112806105331113_j_biol-2022-0772_ref_013
  doi: 10.3389/fgene.2020.00073
– ident: 2023112806105331113_j_biol-2022-0772_ref_011
  doi: 10.1016/j.mib.2014.09.008
– ident: 2023112806105331113_j_biol-2022-0772_ref_016
  doi: 10.1038/30234
– ident: 2023112806105331113_j_biol-2022-0772_ref_032
  doi: 10.1093/nar/gkh458
– ident: 2023112806105331113_j_biol-2022-0772_ref_018
  doi: 10.1186/s12870-015-0432-6
– ident: 2023112806105331113_j_biol-2022-0772_ref_024
  doi: 10.1016/j.indcrop.2022.115408
– ident: 2023112806105331113_j_biol-2022-0772_ref_039
  doi: 10.1093/bioinformatics/btp187
– ident: 2023112806105331113_j_biol-2022-0772_ref_017
  doi: 10.1186/s12862-021-01800-1
– ident: 2023112806105331113_j_biol-2022-0772_ref_040
  doi: 10.1093/molbev/msw054
– ident: 2023112806105331113_j_biol-2022-0772_ref_003
  doi: 10.1016/j.phytol.2016.04.020
– ident: 2023112806105331113_j_biol-2022-0772_ref_023
  doi: 10.1016/j.indcrop.2021.114210
– ident: 2023112806105331113_j_biol-2022-0772_ref_002
  doi: 10.1016/j.imr.2015.06.004
– ident: 2023112806105331113_j_biol-2022-0772_ref_025
  doi: 10.1016/j.indcrop.2023.116974
– ident: 2023112806105331113_j_biol-2022-0772_ref_005
  doi: 10.1016/j.scienta.2008.04.001
– ident: 2023112806105331113_j_biol-2022-0772_ref_006
  doi: 10.1007/s11105-016-1010-2
– ident: 2023112806105331113_j_biol-2022-0772_ref_026
  doi: 10.1016/j.indcrop.2023.116674
– ident: 2023112806105331113_j_biol-2022-0772_ref_038
  doi: 10.1371/journal.pone.0111988
– ident: 2023112806105331113_j_biol-2022-0772_ref_009
  doi: 10.1016/j.plantsci.2004.04.029
– ident: 2023112806105331113_j_biol-2022-0772_ref_031
– ident: 2023112806105331113_j_biol-2022-0772_ref_029
  doi: 10.1002/ece3.1611
– ident: 2023112806105331113_j_biol-2022-0772_ref_036
  doi: 10.1093/bioinformatics/btx198
– ident: 2023112806105331113_j_biol-2022-0772_ref_021
  doi: 10.1007/s11738-020-03089-x
– ident: 2023112806105331113_j_biol-2022-0772_ref_028
  doi: 10.1080/23802359.2018.1521313
– ident: 2023112806105331113_j_biol-2022-0772_ref_014
  doi: 10.1073/pnas.92.17.7759
– ident: 2023112806105331113_j_biol-2022-0772_ref_022
  doi: 10.1016/j.indcrop.2021.113248
– ident: 2023112806105331113_j_biol-2022-0772_ref_019
  doi: 10.3390/ijms22116143
– ident: 2023112806105331113_j_biol-2022-0772_ref_007
  doi: 10.1007/s11104-015-2396-6
– ident: 2023112806105331113_j_biol-2022-0772_ref_030
  doi: 10.1093/nar/gkz238
– ident: 2023112806105331113_j_biol-2022-0772_ref_027
  doi: 10.1016/j.plaphy.2023.107698
– ident: 2023112806105331113_j_biol-2022-0772_ref_012
  doi: 10.1007/s00606-007-0608-0
– ident: 2023112806105331113_j_biol-2022-0772_ref_037
  doi: 10.1093/jhered/92.4.371
SSID ssj0001542506
Score 2.3106663
Snippet Most plants belonging to the widely distributed genus are used for gardening. Interspecific hybridization of different species leads to blurred genetic...
Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to...
Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20220772
SubjectTerms comparative analysis
molecular markers
phylogenetic analysis
simple sequence repeat
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwSX5S3KS0ZCgku2ieMm9nFhqVYcVhyoBCfLr7QrSlLlwar8emaSNCJFK5C4WYmdZOzxzDfx-DMhr11obSS8CQAa84Br68EOwnyUYAeTFlToNkH2Ijlf8o9f5vtswqpPq3R-VTa7umNInbnCNvijbOAaAA88Q4YiGGCGmZMpm21ddpMcJXOA4xNytLz4dPq1PVRORsGcR6wna_yz4cgZtZz9I6B5mCZ5u8m3enelN1A-vmqXs4dv_c0rLe4Ss5enS0b5dtLU5sT-PKB6_C-B75HjHrPS007J7pMbPn9AbnWnWO4eksUZ2ol81VxWa3oG6lavm4riFk6IwmlR0h8YjyNxK0Wf6WiRU7veFGWxBeheU6SJ_e6rR2S5-PD5_XnQH88QWC54HcTCep2wDACV9VJ65qyOEmZsZBxPU5G5xCbO8dAy4ZFERhgtbMq4kalJMxM_JpO8yP0TQq32HtobCFct9y7VGUTLoQM0YQChhnJKgv04Kdtzl-MRGhuFMQz0j8L-Udg_CvtnSt4M9bcda8e1Nd_hsA-1kG27vVCUK9VPXpWlaZLFsQEpOLecmVgKJpE5UWsmw3hKXu2VRsHsxCUXnfuiqRSEswkyPHF4kRhp0-iN4zv55brl-YZoXQCgBunfDor3V3HYgV6q3iZV17QAhPf035__jNyBcoybMZl4TiZ12fgXgMpq87Kfd78AJoI4QQ
  priority: 102
  providerName: Unpaywall
Title Distinguish Dianthus species or varieties based on chloroplast genomes
URI https://www.degruyter.com/doi/10.1515/biol-2022-0772
https://www.proquest.com/docview/2896804142
https://pubmed.ncbi.nlm.nih.gov/PMC10685409
https://www.degruyter.com/document/doi/10.1515/biol-2022-0772/pdf
https://doaj.org/article/f776f33be3544c42b398292398aa2903
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: KQ8
  dateStart: 20140919
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAZK
  databaseName: Walter De Gruyter: Open Access Journals
  customDbUrl:
  eissn: 2391-5412
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542506
  issn: 2391-5412
  databaseCode: AHGSO
  dateStart: 20060315
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQFWovqDyqbh_ISJXKJSLrGD-OtLBCHFAPXQlOll9hkSBZbZKi_fedSbIrgoS4cIsSO4nHY8_3yePPhPwIqfdjFV0C0Jgn3PoI8yCMRw3zoGhBhW0TZK_ExZRfXp9cPznqC3PCOnngznDHuZQizzIXsxPOPWcu04ppVK2zlulO5zNV-gmZ6vYHgy-moldphJh9jJpG4BIMcy0lG0ShVqx_gDCf50e-b4q5XT7ae7jefmzXsUO8XTTLerVu2oajyUey3eNIetr9_w7ZiMUu2epOllzukckZjt3itrmrZvQMXKCeNRXFbZXAjGm5oP-QI6OYKsU4FmhZUD8D7l7OAU7XFKVbH2K1T6aT87-_L5L-yITEc8XrJFM-WsFyADk-ah1Z8HYsmPNjF7iUKg_CixB46pmKKOyinFVeMu60dDJ32SeyWZRF_EyotzFCfQcU0vMYpM2BwaYBIrwD1JjqEUlWJjS-1xPHYy3uDfIKMLlBkxs0uUGTj8jPdfl5p6TxYslf2CPrUqiA3d4AvzC9X5jX_GJEDlf9aWDE4DKILWLZVAYopkDVJQ4fUoOOHnxx-KS4m7Xa28CgFYBcaP3R2idebQ575jKmnyeqF2oA6vryFjb4Sj7AOzPcOsnUN7JZL5r4HTBU7Q7a4XJA3k2v_pze_AfJdhwM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFSqXiqe6PI2EBJdos45rO8dCWRYo5UAr9Wb5lU2lbbLaJFT775nJpqEpqpC4RbEdx-MZzzd-fCbkrY-dm6hgI4DGPOLGBRgHwR5TGAdFCypMu0H2WMxO-dez_bNrZ2FwW6UP81WzrjcMqWNfugYnynquAfDAY2Qogg5muHNSsnFeXyzukm0Bnwdd3z6Yff75489Myz7oZSw6xsa_Sw88UkvcP0CbN_dK7jTF0qwvzQKedy_bNe3-h6-5pukDstthSnqwUYKH5E4oHpF7m1sm14_J9BDtuJg351VOD0Ed6rypKB6xhCiZliv6C-NlJFal6NM8LQvqcojjyyVA65oijetFqJ6Q0-mnk4-zqLs-IXJc8TpKlAtGsAwAjwtpGph3ZiKYdRPruZQq88IJ73nsmApI8qKsUU4yblNpZWaTp2SrKIuwR6gzIUB5C-Gk48FLk0E0G3vw9hYQZJyOSHQlQu06bnG84mKhMcYAkWsUuUaRaxT5iLzr8y83rBq35vyAPdLnQjbs9kW5muvOuHQmpciSxEIrOHec2SRVLEVmQ2NYGicj8uaqPzVYDy6JmCKUTaUh3BTIwMShIjXo6EGNw5TiPG95uCGaVgB4ofXve534Z3PYDZXR3ZhR3VICENiz_yn0muzMTr4f6aMvx9-ek_uQlOARSqZekK161YSXgKVq-6ozlt_8Ah6B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE7CXiU_RsYGRkOAlaup4tvM4Vkr50ECCSbxZ_ko7aSRVkzD1v-cuTTMyNCHxFiW2HJ_vfL-zzz8T8srHzo1VsBFAYx5x4wLMg2CPKcyDogEVpkmQPRWzM_7xx9E2m7Bs0yp9mK_qdbVhSB35wtW4UNZxDYAHHiFDEQwww8xJyUZLn90mO0KAexuQnePZ-29frhZajkAtY9ESNv5dueeQGt7-Hti8nip5r86XZn1pLuB577LZ0u7-9w_PNL1P9lpISY83OvCA3Ar5Q3Jnc8nk-hGZTtCM83l9Xi7oBLShWtQlxROWECTTYkV_YbiMvKoUXZqnRU7dAsL4YgnIuqLI4vozlI_J2fTd95NZ1N6eEDmueBUlygUjWAZ4x4U0Dcw7MxbMurH1XEqVeeGE9zx2TAXkeFHWKCcZt6m0MrPJEzLIizw8JdSZEKC-hWjS8eClySCYjT04ewsAMk6HJNqKULuWWhxvuLjQGGKAyDWKXKPINYp8SF535ZcbUo0bS77FEelKIRl286JYzXVrWzqTUmRJYqEXnDvObJIqliKxoTEsjZMhebkdTw3GgzsiJg9FXWqINgUSMHFoSPUGutdi_0t-vmhouCGYVoB3ofdvOp34Z3fYNZXR7ZRR3lADANj-_1R6Qe5-nUz15w-nn56RXfiS4AFKpg7IoFrV4RCQVGWft7byGzrrHbA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwSX5S3KS0ZCgku2ieMm9nFhqVYcVhyoBCfLr7QrSlLlwar8emaSNCJFK5C4WYmdZOzxzDfx-DMhr11obSS8CQAa84Br68EOwnyUYAeTFlToNkH2Ijlf8o9f5vtswqpPq3R-VTa7umNInbnCNvijbOAaAA88Q4YiGGCGmZMpm21ddpMcJXOA4xNytLz4dPq1PVRORsGcR6wna_yz4cgZtZz9I6B5mCZ5u8m3enelN1A-vmqXs4dv_c0rLe4Ss5enS0b5dtLU5sT-PKB6_C-B75HjHrPS007J7pMbPn9AbnWnWO4eksUZ2ol81VxWa3oG6lavm4riFk6IwmlR0h8YjyNxK0Wf6WiRU7veFGWxBeheU6SJ_e6rR2S5-PD5_XnQH88QWC54HcTCep2wDACV9VJ65qyOEmZsZBxPU5G5xCbO8dAy4ZFERhgtbMq4kalJMxM_JpO8yP0TQq32HtobCFct9y7VGUTLoQM0YQChhnJKgv04Kdtzl-MRGhuFMQz0j8L-Udg_CvtnSt4M9bcda8e1Nd_hsA-1kG27vVCUK9VPXpWlaZLFsQEpOLecmVgKJpE5UWsmw3hKXu2VRsHsxCUXnfuiqRSEswkyPHF4kRhp0-iN4zv55brl-YZoXQCgBunfDor3V3HYgV6q3iZV17QAhPf035__jNyBcoybMZl4TiZ12fgXgMpq87Kfd78AJoI4QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinguish+Dianthus+species+or+varieties+based+on+chloroplast+genomes&rft.jtitle=Open+life+sciences&rft.au=Meng%2C+Dong&rft.au=Yang%2C+Liu&rft.au=Yunlin%2C+Zhao&rft.au=Guiyan%2C+Yang&rft.date=2023-11-28&rft.issn=2391-5412&rft.eissn=2391-5412&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1515%2Fbiol-2022-0772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_biol_2022_0772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5412&client=summon