On consideration of radiated power in RF field simulations for MRI
In numerical analyses of radiofrequency (RF) fields for MRI, RF power is often permitted to radiate out of the problem region. In reality, RF power will be confined by the magnet bore and RF screen enclosing the magnet room. We present numerical calculations at different frequencies for various surf...
Saved in:
Published in | Magnetic resonance in medicine Vol. 69; no. 1; pp. 290 - 294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.01.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.24244 |
Cover
Summary: | In numerical analyses of radiofrequency (RF) fields for MRI, RF power is often permitted to radiate out of the problem region. In reality, RF power will be confined by the magnet bore and RF screen enclosing the magnet room. We present numerical calculations at different frequencies for various surface and volume coils, with samples from simple spheres to the human body in environments from free space to a shielded RF room. Results for calculations within a limited problem region show radiated power increases with frequency. When the magnet room RF screen is included, nearly all the power is dissipated in the human subject. For limited problem regions, inclusion of a term for radiation loss results in an underestimation of transmit efficiency compared to results including the complete bore and RF screen. If the term for radiated power is not included, calculated coil efficiencies are slightly overestimated compared to the complete case. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc. |
---|---|
Bibliography: | NIH - No. R01 EB000454; No. R01 EB000895 ark:/67375/WNG-WJ1QKTWH-N ArticleID:MRM24244 istex:90D84195938067FE206875CD6AD9299F77582AC2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0740-3194 1522-2594 1522-2594 |
DOI: | 10.1002/mrm.24244 |