Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework

This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines -dominance, a measure of convergence speed named -progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary computation Vol. 21; no. 2; pp. 231 - 259
Main Authors Hadka, David, Reed, Patrick
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.05.2013
Subjects
Online AccessGet full text
ISSN1063-6560
1530-9304
1530-9304
DOI10.1162/EVCO_a_00075

Cover

More Information
Summary:This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines -dominance, a measure of convergence speed named -progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameteri- zation space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems.
Bibliography:Summer, 2013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1063-6560
1530-9304
1530-9304
DOI:10.1162/EVCO_a_00075