Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors
Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for...
Saved in:
Published in | Nature chemistry Vol. 6; no. 11; pp. 1003 - 1008 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1755-4330 1755-4349 1755-4349 |
DOI | 10.1038/nchem.2058 |
Cover
Summary: | Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed
in situ
with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects.
Recognition, differentiation and sensing of small molecules displaying only sparse functionalities using artificial receptors is extremely challenging. Now a method to selectively bind and recognise low-epitope targets has been developed. The approach uses the formation of ternary complexes between small-molecule targets, their non-specific organic (or organometallic) receptors, and aptamers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/nchem.2058 |