Control under constraints: an application of the command governor approach to an inverted pendulum
The purpose of this paper is to exhibit the relevance of command governor (CG) strategies in real control problems, where consideration has to be given to nonlinearities, model uncertainties, disturbances, input and state-related constraints and requirements of moderate computational complexity. The...
Saved in:
| Published in | IEEE transactions on control systems technology Vol. 12; no. 1; pp. 193 - 204 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.01.2004
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6536 1558-0865 |
| DOI | 10.1109/TCST.2003.821953 |
Cover
| Summary: | The purpose of this paper is to exhibit the relevance of command governor (CG) strategies in real control problems, where consideration has to be given to nonlinearities, model uncertainties, disturbances, input and state-related constraints and requirements of moderate computational complexity. The plant considered is a laboratory cart/rod inverted pendulum for which the control problem consists of regulating vertically its rod subject to motor voltage and rod angle constraints, while providing full-range optimized tracking performance for the cart position. The merits of the proposed CG technique in this application are investigated, and its advantages over classic linear time-invariant design methods are discussed. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1063-6536 1558-0865 |
| DOI: | 10.1109/TCST.2003.821953 |