Control under constraints: an application of the command governor approach to an inverted pendulum

The purpose of this paper is to exhibit the relevance of command governor (CG) strategies in real control problems, where consideration has to be given to nonlinearities, model uncertainties, disturbances, input and state-related constraints and requirements of moderate computational complexity. The...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 12; no. 1; pp. 193 - 204
Main Authors Casavola, A., Mosca, E., Papini, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2003.821953

Cover

More Information
Summary:The purpose of this paper is to exhibit the relevance of command governor (CG) strategies in real control problems, where consideration has to be given to nonlinearities, model uncertainties, disturbances, input and state-related constraints and requirements of moderate computational complexity. The plant considered is a laboratory cart/rod inverted pendulum for which the control problem consists of regulating vertically its rod subject to motor voltage and rod angle constraints, while providing full-range optimized tracking performance for the cart position. The merits of the proposed CG technique in this application are investigated, and its advantages over classic linear time-invariant design methods are discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2003.821953