Distributed Fault Detection for Linear Time-Varying Multi-Agent Systems With Relative Output Information

This paper investigates the distributed fault detection problem for linear discrete time-varying heterogeneous multi-agent systems under relative output information. Due to the lack of absolute outputs, an augmented model is built by stacking all local relative output information. Then, the fault de...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 42933 - 42946
Main Authors Zou, Peilu, Wang, Ping, Yu, Chengpu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3066109

Cover

More Information
Summary:This paper investigates the distributed fault detection problem for linear discrete time-varying heterogeneous multi-agent systems under relative output information. Due to the lack of absolute outputs, an augmented model is built by stacking all local relative output information. Then, the fault detection problem consisting of residual-generation and residual-evaluation is handled using the <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> filtering framework. The residual-generation problem is actually a minimization problem of an indefinite quadratic form, and the Krein space-Kalman filtering theory is applied, which results in a low computational burden despite the time-varying characteristic. Using the Krein space theory, a necessary and sufficient condition for the minimum is derived, and a residual-generation algorithm is developed. Further, a residual-evaluation mechanism is designed by constructing an evaluation function and detecting faults by comparing it with a threshold. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed fault detection approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3066109