A Proof-of-Concept Electrochemical Skin Sensor for Simultaneous Measurement of Glial Fibrillary Acidic Protein (GFAP) and Interleukin-6 (IL-6) for Management of Traumatic Brain Injuries

This work demonstrates the use of a noninvasive, sweat-based dual biomarker electrochemical sensor for continuous, prognostic monitoring of a Traumatic Brain Injury (TBI) with the aim of enhancing patient outcomes and reducing the time to treatment after injury. A multiplexed SWEATSENSER was used fo...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 12; no. 12; p. 1095
Main Authors Shahub, Sarah, Lin, Kai-Chun, Muthukumar, Sriram, Prasad, Shalini
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.11.2022
MDPI
Subjects
Online AccessGet full text
ISSN2079-6374
2079-6374
DOI10.3390/bios12121095

Cover

More Information
Summary:This work demonstrates the use of a noninvasive, sweat-based dual biomarker electrochemical sensor for continuous, prognostic monitoring of a Traumatic Brain Injury (TBI) with the aim of enhancing patient outcomes and reducing the time to treatment after injury. A multiplexed SWEATSENSER was used for noninvasive continuous monitoring of glial fibrillary acidic protein (GFAP) and Interleukin-6 (IL-6) in a human sweat analog and in human sweat. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to measure the sensor response. The assay chemistry was characterized using Fourier Transform Infrared Spectroscopy (FTIR). The SWEATSENSER was able to detect GFAP and IL-6 in sweat over a dynamic range of 3 log orders for GFAP and 2 log orders for IL-6. The limit of detection (LOD) for GFAP detection in the sweat analog was estimated to be 14 pg/mL using EIS and the LOD for IL-6 was estimated to be 10 pg/mL using EIS. An interference study was performed where the specific signal was significantly higher than the non-specific signal. Finally, the SWEATSENSER was able to distinguish between GFAP and IL-6 in simulated conditions of a TBI in human sweat. This work demonstrates the first proof-of-feasibility of a multiplexed TBI marker combined with cytokine and inflammatory marker detection in passively expressed sweat in a wearable form-factor that can be utilized toward better management of TBIs. This is the first step toward demonstrating a noninvasive enabling technology that can enable baseline tracking of an inflammatory response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2079-6374
2079-6374
DOI:10.3390/bios12121095