Evolutionary Strategies AI Addresses Multiple Technical Challenges in Deep Learning Deployment: Proof-of-Principle Demonstration for Neuroblastoma Brain Metastasis Detection
Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the techno...
Saved in:
| Published in | Journal of digital imaging Vol. 37; no. 6; pp. 2920 - 2930 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.12.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
| DOI | 10.1007/s10278-024-01165-z |
Cover
| Summary: | Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the technology across various institutions and practices. A recent innovation, deep neuroevolution (DNE), has been introduced to tackle the overfitting issue by training on small data sets and producing accurate predictions. However, the generalizability of DNE has yet to be proven. This paper strives to overcome this barrier by demonstrating that DNE can achieve satisfactory results in diverse external validation sets. The main innovation of the work is thus showing that DNE can generalize to varied outside data. Our example use case is predicting brain metastasis from neuroblastoma, emphasizing the importance of AI with limited data sets. Despite image collection and labeling advancements, rare diseases will always constrain data availability. We optimized a convolutional neural network (CNN) with DNE to demonstrate generalizability. We trained the CNN with 60 MRI images and tested it on a separate diverse collection of images from over 50 institutions. For comparison, we also trained with the more traditional stochastic gradient descent (SGD) method, with the two variants of (1) training from scratch and (2) transfer learning. Our results show that DNE demonstrates excellent generalizability with 97% accuracy on the heterogeneous testing set, while neither form of SGD could reach 60% accuracy. DNE’s ability to generalize from small training sets to external and diverse testing sets suggests that it or similar approaches may play an integral role in improving the clinical performance of AI. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
| DOI: | 10.1007/s10278-024-01165-z |