Detection of Small Bowel Slow-Wave Frequencies From Noninvasive Biomagnetic Measurements

We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 56; no. 9; pp. 2181 - 2189
Main Authors Erickson, Jonathan C., Obioha, Chibuike, Goodale, Adam, Bradshaw, L. Alan, Richards, William O.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2009.2024087

Cover

More Information
Summary:We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequently, the underlying source signals are separated using the well-known second-order blind identification (SOBI) algorithm. A simple classification scheme identifies and assigns some of the SOBI components to a section of small bowel. SWFs were clearly identified in 10 out of 12 test subjects to within 0.09-0.25 cycles per minute. The method is sensitive at the 40.3 %-55.9% level, while false positive rates were 0%-8.6 %. This technique could potentially be used to help diagnose gastrointestinal ailments and obviate some exploratory surgeries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2009.2024087