Detection of Small Bowel Slow-Wave Frequencies From Noninvasive Biomagnetic Measurements
We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequen...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 56; no. 9; pp. 2181 - 2189 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2009.2024087 |
Cover
Summary: | We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequently, the underlying source signals are separated using the well-known second-order blind identification (SOBI) algorithm. A simple classification scheme identifies and assigns some of the SOBI components to a section of small bowel. SWFs were clearly identified in 10 out of 12 test subjects to within 0.09-0.25 cycles per minute. The method is sensitive at the 40.3 %-55.9% level, while false positive rates were 0%-8.6 %. This technique could potentially be used to help diagnose gastrointestinal ailments and obviate some exploratory surgeries. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2009.2024087 |