Outlier detection in high-density surface electromyographic signals

Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 50; no. 1; pp. 79 - 89
Main Authors Marateb, Hamid R., Rojas-Martínez, Monica, Mansourian, Marjan, Merletti, Roberto, Mañanas Villanueva, Miguel A.
Format Journal Article Publication
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.01.2012
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-011-0790-7

Cover

Abstract Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called ‘outliers’ in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify ‘bad’ channels. The overall performance of this method was tested using the agreement rate against three experts’ opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
AbstractList Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause nearzero single differential signals when using gel. Such signals are called ‘outliers’ in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify ‘bad’ channels. The overall performance of this method was tested using the agreement rate against three experts’ opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called ‘outliers’ in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify ‘bad’ channels. The overall performance of this method was tested using the agreement rate against three experts’ opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 plus or minus 6.2 and 96.4 plus or minus 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.[PUBLICATION ABSTRACT]
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.
Author Mansourian, Marjan
Merletti, Roberto
Mañanas Villanueva, Miguel A.
Rojas-Martínez, Monica
Marateb, Hamid R.
Author_xml – sequence: 1
  givenname: Hamid R.
  surname: Marateb
  fullname: Marateb, Hamid R.
  email: hamid.marateb@polito.it
  organization: Laboratory for Engineering of the Neuromuscular Systems, Department of Electronics, Politecnico di Torino
– sequence: 2
  givenname: Monica
  surname: Rojas-Martínez
  fullname: Rojas-Martínez, Monica
  organization: Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, CREB, Department ESAII, Technical University of Catalonia, UPC
– sequence: 3
  givenname: Marjan
  surname: Mansourian
  fullname: Mansourian, Marjan
  organization: Department of Biostatistics and Epidemiology, Health School, Isfahan University of Medical Science
– sequence: 4
  givenname: Roberto
  surname: Merletti
  fullname: Merletti, Roberto
  organization: Laboratory for Engineering of the Neuromuscular Systems, Department of Electronics, Politecnico di Torino
– sequence: 5
  givenname: Miguel A.
  surname: Mañanas Villanueva
  fullname: Mañanas Villanueva, Miguel A.
  organization: Biomedical Engineering Research Centre, CREB, CIBER-BBN, Department ESAII, Technical University of Catalonia, UPC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21698432$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2PFCEQholZ486u_gAvpuNFL60U0HwczcSvZJO96JnQdM0Mm55mBPow_146M5M1Jq4HqFR43heoqhtyNcUJCXkN9ANQqj5mgA5USwFaqgxt1TOyAiVqJoS4IisKgi6n-prc5PxAKYOOiRfkmoE0WnC2Iuv7uYwBUzNgQV9CnJowNbuw3bUDTjmUY5PntHEeGxwrkOL-GLfJHXbBNzlsJzfml-T5pgZ8dY635OeXzz_W39q7-6_f15_uWi-UKq0elGLIOtPDIDdgeNf33TD0xgnjlXee0p4hcNpxyTX23A1eC4pMShCe9_yWwMnX59nbhB6Td8VGFx6TZTGqWN2k7nTVvDtpDin-mjEXuw_Z4zi6CeOcrWFSa2OE-D8JXAjFFa_k-ydJkKqyVFJV0bd_oQ9xTkvRFr9Kcb3c_OYMzf0eB3tIYe_S0V66VAF1_niKOSfcWB-KW5pVkgujBWqXebCnebC143aZB6v-KNlFeTF_SsNOmlzZaYvp8c3_Fv0GXGPE5A
CitedBy_id crossref_primary_10_1007_s11600_021_00639_w
crossref_primary_10_1016_j_bspc_2024_107441
crossref_primary_10_3390_s23104759
crossref_primary_10_1109_TGRS_2021_3118921
crossref_primary_10_1371_journal_pone_0167954
crossref_primary_10_1038_s41597_020_00717_6
crossref_primary_10_1016_j_bbe_2013_09_001
crossref_primary_10_1109_TIM_2023_3320737
crossref_primary_10_1109_TNNLS_2021_3105595
crossref_primary_10_1016_j_bspc_2021_103122
crossref_primary_10_1088_1741_2552_acae0b
crossref_primary_10_1109_TNSRE_2016_2515087
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_32604_iasc_2023_032337
crossref_primary_10_1109_TBME_2016_2603463
crossref_primary_10_1140_epjs_s11734_024_01415_9
crossref_primary_10_1109_JBHI_2023_3262316
crossref_primary_10_1016_j_jelekin_2016_10_003
crossref_primary_10_1109_TNSRE_2020_2997213
crossref_primary_10_3390_app13116483
crossref_primary_10_1186_s12984_015_0011_y
crossref_primary_10_1109_TIM_2014_2317296
crossref_primary_10_1371_journal_pone_0109943
crossref_primary_10_1016_j_bspc_2023_105414
crossref_primary_10_1109_TNSRE_2018_2813421
crossref_primary_10_1038_srep36571
crossref_primary_10_1016_j_bspc_2021_103127
crossref_primary_10_1186_1743_0003_9_85
crossref_primary_10_1016_j_bspc_2023_105800
crossref_primary_10_1109_JBHI_2021_3118810
crossref_primary_10_1109_TNSRE_2014_2299573
crossref_primary_10_4018_IJGHPC_336474
crossref_primary_10_1016_j_clinph_2016_02_005
crossref_primary_10_1109_TNSRE_2014_2366752
crossref_primary_10_1109_RBME_2022_3164797
crossref_primary_10_3389_fncom_2019_00014
Cites_doi 10.3758/BF03193146
10.2307/2290763
10.1037/h0031619
10.1016/j.jneumeth.2008.10.019
10.1109/34.761263
10.1007/BF02345813
10.2307/1266761
10.1111/1467-9884.00279
10.2307/1270037
10.1016/j.jmva.2004.08.002
10.2307/2686061
10.2307/2683468
10.1007/BF00206543
10.1214/aoms/1177693054
10.1109/TIP.2006.877067
10.1109/TBME.1984.325303
10.1016/S1050-6411(96)00024-7
10.2307/1270566
10.3758/BRM.41.4.1149
10.1007/BF02407675
10.1198/004017002188618509
10.1007/s10479-008-0371-9
10.2307/1403809
10.2307/2291420
10.1002/0471725382
10.1007/BF02350994
10.1109/87.974338
10.1073/pnas.97.4.1423
10.5772/5526
10.1007/3-540-45681-3_2
10.1111/j.2517-6161.1992.tb01449.x
10.1007/978-94-015-3994-4
10.1109/FUZZY.1999.793233
10.1007/978-3-642-01307-2_84
10.1111/j.2517-6161.1950.tb00054.x
10.1145/1645953.1646195
10.1145/342009.335388
10.1007/978-1-4899-3324-9
10.1177/1536867X0300300204
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics
Copyright International Federation for Medical and Biological Engineering 2011
International Federation for Medical and Biological Engineering 2012
info:eu-repo/semantics/openAccess
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2011
– notice: International Federation for Medical and Biological Engineering 2012
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
XX2
DOI 10.1007/s11517-011-0790-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (via ProQuest)
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (Proquest)
Biological Science Database
Biochemistry Abstracts 1
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Recercat
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList

MEDLINE
Technology Research Database
ProQuest Business Collection (Alumni Edition)
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 89
ExternalDocumentID oai_recercat_cat_2072_206858
2550434591
21698432
10_1007_s11517_011_0790_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
XX2
ID FETCH-LOGICAL-c477t-8d772e259b1d6f1935bb5ddb9a49c7cac00b2e13053638eb3adc840e26614c3b3
IEDL.DBID AGYKE
ISSN 0140-0118
1741-0444
IngestDate Sat Oct 18 14:55:54 EDT 2025
Tue Oct 07 09:20:45 EDT 2025
Thu Sep 04 20:22:50 EDT 2025
Wed Oct 01 14:07:47 EDT 2025
Tue Oct 07 05:22:31 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Oct 01 06:47:31 EDT 2025
Fri Feb 21 02:31:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robust statistics
Multichannel surface electromyography
Logistic regression
Feature extraction
Detection theory
Multivariate outlier detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-8d772e259b1d6f1935bb5ddb9a49c7cac00b2e13053638eb3adc840e26614c3b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/206858
PMID 21698432
PQID 913134384
PQPubID 54161
PageCount 11
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_206858
proquest_miscellaneous_926889944
proquest_miscellaneous_913447373
proquest_miscellaneous_1671340607
proquest_journals_913134384
pubmed_primary_21698432
crossref_citationtrail_10_1007_s11517_011_0790_7
crossref_primary_10_1007_s11517_011_0790_7
springer_journals_10_1007_s11517_011_0790_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120100
2012-01-00
2012-Jan
20120101
2012-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 1
  year: 2012
  text: 20120100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2012
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References Ben-Gal, Maimon, Rockach (CR4) 2005
Geddes, Valentinuzzi (CR20) 1973; 1
Croux, Ruiz-Gazen (CR12) 2005; 95
CR39
Tukey (CR56) 1977
Westerweel (CR60) 1994; 16
Hosmer, Hollander, Wolfe (CR29) 1973
Randles, Kotz, Johnson (CR48) 1988
Kendall, McCreary, Provance (CR32) 1993
CR34
CR33
Hawkins (CR28) 1980
Bilodeau, Cincera, Arsenault, Gravel (CR6) 1997; 7
Lemeshow (CR35) 2000
Rodriguez, Kotz, Johnson (CR49) 1982
Faul, Erdfelder, Buchner, Lang (CR18) 2009; 41
Mosteller, Tukey (CR45) 1977
Bertalmio (CR5) 2006; 15
Penny, Jolliffe (CR47) 2001; 50
CR2
Duan, Xu, Liu, Lee (CR15) 2009; 168
Mcgill, Tukey, Larsen (CR42) 1978; 32
Mahalanobis (CR37) 1936; 2
Conover (CR11) 1980
CR8
CR7
Mewett, Reynolds, Nazeran (CR43) 2004; 42
Van Kerm (CR57) 2003; 3
CR9
Goldberg, Iglewicz (CR21) 1992; 34
Gonzalez, Woods (CR22) 2002
Silverman (CR54) 1986
Barnett, Lewis (CR3) 1994
Faul, Erdfelder, Lang, Buchner (CR17) 2007; 39
Malinowski (CR38) 1991
Grubbs (CR24) 1969; 11
Jones, Marron, Sheather (CR31) 1996; 91
Hadi (CR25) 1992; 54
Hadi, Rahmatullah Imon, Werner (CR26) 2009
Davies, Gather (CR14) 1993; 88
CR59
Inbar, Noujaim (CR30) 1984; 31
Minium, Clarke, Coladarci (CR44) 1999
Daniels (CR13) 1950; 12
Hampel (CR27) 1971; 42
Maronna, Zamar (CR41) 2002; 44
Cohen (CR10) 1988
Rousseeuw, Van Driessen (CR51) 1999; 41
Duda, Hart, Stork (CR16) 2000
Marateb, Rojas-Martínez, Mañanas Villanueva, Merletti (CR40) 2010; 1
López, Lumbreras, Serrat, Villanueva (CR36) 1999; 21
Small (CR55) 1990; 58
Grönlund, Roeleveld, Holtermann, Karlsson (CR23) 2005; 43
Pearson (CR46) 2002; 10
Allen (CR1) 2009; 177
Fleiss (CR19) 1971; 76
Rousseeuw, Leory (CR50) 1987
Shapiro, Stockman (CR53) 2001
CR61
Varid, Zhang (CR58) 2000; 97
Rousseeuw, Ruts, Tukey (CR52) 1999; 53
790_CR59
C Croux (790_CR12) 2005; 95
J Westerweel (790_CR60) 1994; 16
PJ Rousseeuw (790_CR51) 1999; 41
MC Jones (790_CR31) 1996; 91
PC Mahalanobis (790_CR37) 1936; 2
JL Fleiss (790_CR19) 1971; 76
M Bertalmio (790_CR5) 2006; 15
F Faul (790_CR18) 2009; 41
M Bilodeau (790_CR6) 1997; 7
LA Geddes (790_CR20) 1973; 1
KM Goldberg (790_CR21) 1992; 34
CG Small (790_CR55) 1990; 58
FR Hampel (790_CR27) 1971; 42
790_CR61
DT Mewett (790_CR43) 2004; 42
AS Hadi (790_CR25) 1992; 54
AS Hadi (790_CR26) 2009
R Mcgill (790_CR42) 1978; 32
LG Shapiro (790_CR53) 2001
RC Gonzalez (790_CR22) 2002
ER Malinowski (790_CR38) 1991
P Van Kerm (790_CR57) 2003; 3
C Grönlund (790_CR23) 2005; 43
HE Daniels (790_CR13) 1950; 12
JW Tukey (790_CR56) 1977
RN Rodriguez (790_CR49) 1982
EW Minium (790_CR44) 1999
PJ Rousseeuw (790_CR52) 1999; 53
790_CR39
RA Maronna (790_CR41) 2002; 44
KI Penny (790_CR47) 2001; 50
L Davies (790_CR14) 1993; 88
F Faul (790_CR17) 2007; 39
790_CR33
F Grubbs (790_CR24) 1969; 11
790_CR34
WJ Conover (790_CR11) 1980
DM Hawkins (790_CR28) 1980
DP Allen (790_CR1) 2009; 177
HR Marateb (790_CR40) 2010; 1
AM López (790_CR36) 1999; 21
J Cohen (790_CR10) 1988
V Barnett (790_CR3) 1994
FP Kendall (790_CR32) 1993
F Mosteller (790_CR45) 1977
DW Hosmer (790_CR29) 1973
RH Randles (790_CR48) 1988
L Duan (790_CR15) 2009; 168
S Lemeshow (790_CR35) 2000
RK Pearson (790_CR46) 2002; 10
PJ Rousseeuw (790_CR50) 1987
BW Silverman (790_CR54) 1986
Y Varid (790_CR58) 2000; 97
RO Duda (790_CR16) 2000
790_CR9
790_CR8
I Ben-Gal (790_CR4) 2005
790_CR2
790_CR7
GF Inbar (790_CR30) 1984; 31
10677477 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6
16035224 - Med Biol Eng Comput. 2005 May;43(3):357-64
19897823 - Behav Res Methods. 2009 Nov;41(4):1149-60
19010353 - J Neurosci Methods. 2009 Mar 15;177(2):303-10
6490036 - IEEE Trans Biomed Eng. 1984 Sep;31(9):597-604
16830913 - IEEE Trans Image Process. 2006 Jul;15(7):1934-8
15320462 - Med Biol Eng Comput. 2004 Jul;42(4):524-31
4774377 - Ann Biomed Eng. 1973 Mar;1(3):356-67
20719694 - J Electromyogr Kinesiol. 1997 Jun;7(2):87-96
21096649 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4850-3
17695343 - Behav Res Methods. 2007 May;39(2):175-91
References_xml – year: 1994
  ident: CR3
  publication-title: Outliers in statistical data
– start-page: 613
  year: 1988
  end-page: 616
  ident: CR48
  article-title: Wilcoxon signed rank test
  publication-title: Encyclopedia of statistical sciences
– volume: 39
  start-page: 175
  issue: 2
  year: 2007
  end-page: 191
  ident: CR17
  article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences
  publication-title: Behav Res Method
  doi: 10.3758/BF03193146
– volume: 88
  start-page: 782
  year: 1993
  end-page: 792
  ident: CR14
  article-title: The identification of multiple outliers
  publication-title: J Am Stat Assoc
  doi: 10.2307/2290763
– volume: 76
  start-page: 378
  issue: 5
  year: 1971
  end-page: 382
  ident: CR19
  article-title: Measuring nominal scale agreement among many raters
  publication-title: Psychol Bull
  doi: 10.1037/h0031619
– year: 1993
  ident: CR32
  publication-title: Muscles and testing function
– volume: 177
  start-page: 303
  year: 2009
  end-page: 310
  ident: CR1
  article-title: A frequency domain hampel filter for blind rejection of sinusoidal interference from electromyograms
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2008.10.019
– volume: 21
  start-page: 327
  issue: 4
  year: 1999
  end-page: 335
  ident: CR36
  article-title: Evaluation of methods for ridge and valley detection
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.761263
– year: 2002
  ident: CR22
  publication-title: Digital image processing
– ident: CR39
– volume: 3
  start-page: 148
  issue: 2
  year: 2003
  end-page: 156
  ident: CR57
  article-title: Adaptive kernel density estimation
  publication-title: Stat J
– volume: 43
  start-page: 357
  issue: 3
  year: 2005
  end-page: 364
  ident: CR23
  article-title: On-line signal quality estimation of multichannel surface electromyograms
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345813
– ident: CR61
– ident: CR8
– volume: 11
  start-page: 1
  issue: 1
  year: 1969
  end-page: 21
  ident: CR24
  article-title: Procedures for detecting outlying observations in samples
  publication-title: Technometrics
  doi: 10.2307/1266761
– year: 1980
  ident: CR28
  publication-title: Identification of outliers
– year: 1986
  ident: CR54
  publication-title: Density estimation for statistics and data analysis
– year: 1980
  ident: CR11
  publication-title: Practical nonparametric statistics
– volume: 12
  start-page: 171
  year: 1950
  end-page: 181
  ident: CR13
  article-title: Rank correlation and population models
  publication-title: J R Stat Soc B
– year: 2000
  ident: CR16
  publication-title: Pattern classification
– year: 1973
  ident: CR29
  publication-title: Nonparametric statistical methods
– volume: 50
  start-page: 295
  issue: 3
  year: 2001
  end-page: 308
  ident: CR47
  article-title: A comparison of multivariate outlier detection methods for clinical laboratory safety data
  publication-title: Statistician
  doi: 10.1111/1467-9884.00279
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: CR37
  article-title: On the generalized distance in statistics
  publication-title: Proc Nat Inst Sci India
– ident: CR9
– volume: 34
  start-page: 307
  issue: 3
  year: 1992
  end-page: 320
  ident: CR21
  article-title: Bivariate extensions of boxplot
  publication-title: Technometrics
  doi: 10.2307/1270037
– volume: 95
  start-page: 206
  issue: 1
  year: 2005
  end-page: 226
  ident: CR12
  article-title: High breakdown estimators for principal components: the projection-pursuit approach revisited
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2004.08.002
– year: 2005
  ident: CR4
  article-title: Outlier detection
  publication-title: Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers
– volume: 53
  start-page: 382
  issue: 4
  year: 1999
  end-page: 387
  ident: CR52
  article-title: The bagplot: a bivariate boxplot
  publication-title: Am Stat
  doi: 10.2307/2686061
– start-page: 57
  year: 2009
  end-page: 70
  ident: CR26
  publication-title: Detection of outliers. WIREs Comp Stat 1
– volume: 32
  start-page: 12
  issue: 1
  year: 1978
  end-page: 16
  ident: CR42
  article-title: Variations of box plots
  publication-title: Am Stat
  doi: 10.2307/2683468
– volume: 16
  start-page: 236
  year: 1994
  end-page: 247
  ident: CR60
  article-title: Efficient detection of spurious vectors in particle image velocimetry data
  publication-title: Exp Fluids
  doi: 10.1007/BF00206543
– volume: 42
  start-page: 1887
  year: 1971
  end-page: 1896
  ident: CR27
  article-title: A general qualitative measure of robustness
  publication-title: Ann Stat
  doi: 10.1214/aoms/1177693054
– volume: 15
  start-page: 1934
  issue: 7
  year: 2006
  end-page: 1938
  ident: CR5
  article-title: Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.877067
– ident: CR2
– ident: CR33
– year: 1977
  ident: CR56
  publication-title: Exploratory data analysis
– start-page: 193
  year: 1982
  end-page: 204
  ident: CR49
  article-title: Correlation
  publication-title: Encyclopedia of statistical sciences
– volume: 31
  start-page: 597
  issue: 9
  year: 1984
  end-page: 604
  ident: CR30
  article-title: On surface EMG spectral characterization and its application to diagnostic classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1984.325303
– volume: 7
  start-page: 87
  issue: 2
  year: 1997
  end-page: 96
  ident: CR6
  article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(96)00024-7
– volume: 1
  start-page: 4850
  year: 2010
  end-page: 4853
  ident: CR40
  article-title: Robust outlier detection in high-density surface electromyographic signals
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 41
  start-page: 212
  year: 1999
  end-page: 223
  ident: CR51
  article-title: A fast algorithm for the minimum covariance determinant estimator
  publication-title: Technometrics
  doi: 10.2307/1270566
– volume: 41
  start-page: 1149
  issue: 4
  year: 2009
  end-page: 1160
  ident: CR18
  article-title: Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses
  publication-title: Behav Res Methods
  doi: 10.3758/BRM.41.4.1149
– volume: 1
  start-page: 356
  year: 1973
  end-page: 367
  ident: CR20
  article-title: Temporal changes in electrode impedance while recording the electrocardiogram with dry electrodes
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02407675
– volume: 44
  start-page: 307
  issue: 4
  year: 2002
  end-page: 317
  ident: CR41
  article-title: Robust estimates of location and dispersion of high-dimensional datasets
  publication-title: Technometrics
  doi: 10.1198/004017002188618509
– volume: 54
  start-page: 761
  issue: 3
  year: 1992
  end-page: 771
  ident: CR25
  article-title: Identifying outliers in multivariate data
  publication-title: J R Stat Soc B
– volume: 168
  start-page: 151
  issue: 1
  year: 2009
  end-page: 168
  ident: CR15
  article-title: Cluster-based outlier detection
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-008-0371-9
– volume: 58
  start-page: 263
  issue: 3
  year: 1990
  end-page: 277
  ident: CR55
  article-title: A survey of multidimensional medians
  publication-title: Int Stat Rev
  doi: 10.2307/1403809
– volume: 91
  start-page: 401
  issue: 433
  year: 1996
  end-page: 407
  ident: CR31
  article-title: A brief survey of bandwidth selection for density estimation
  publication-title: J Am Stat Assoc
  doi: 10.2307/2291420
– year: 2001
  ident: CR53
  publication-title: Computer vision
– year: 1988
  ident: CR10
  publication-title: Statistical power analysis for the behavioral sciences
– year: 1987
  ident: CR50
  publication-title: Robust regression and outlier detection
  doi: 10.1002/0471725382
– year: 1991
  ident: CR38
  publication-title: Factor analysis in chemistry
– ident: CR34
– year: 1977
  ident: CR45
  publication-title: Data analysis and regression: a second course in statistics
– ident: CR7
– volume: 42
  start-page: 524
  year: 2004
  end-page: 531
  ident: CR43
  article-title: Reducing power line interference in digitized electromyograms recordings by spectrum interpolation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02350994
– ident: CR59
– volume: 10
  start-page: 55
  year: 2002
  end-page: 63
  ident: CR46
  article-title: Outliers in process modeling and identification
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/87.974338
– volume: 97
  start-page: 1423
  issue: 4
  year: 2000
  end-page: 1426
  ident: CR58
  article-title: The multivariate L1-median and associated data depth
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.4.1423
– year: 2000
  ident: CR35
  publication-title: Applied logistic regression
– year: 1999
  ident: CR44
  publication-title: Elements of statistical reasoning
– ident: 790_CR39
– volume: 7
  start-page: 87
  issue: 2
  year: 1997
  ident: 790_CR6
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(96)00024-7
– volume: 16
  start-page: 236
  year: 1994
  ident: 790_CR60
  publication-title: Exp Fluids
  doi: 10.1007/BF00206543
– volume: 10
  start-page: 55
  year: 2002
  ident: 790_CR46
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/87.974338
– volume: 168
  start-page: 151
  issue: 1
  year: 2009
  ident: 790_CR15
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-008-0371-9
– volume: 2
  start-page: 49
  year: 1936
  ident: 790_CR37
  publication-title: Proc Nat Inst Sci India
– volume-title: Data analysis and regression: a second course in statistics
  year: 1977
  ident: 790_CR45
– volume-title: Outliers in statistical data
  year: 1994
  ident: 790_CR3
– volume-title: Muscles and testing function
  year: 1993
  ident: 790_CR32
– volume: 97
  start-page: 1423
  issue: 4
  year: 2000
  ident: 790_CR58
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.4.1423
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: 790_CR10
– volume: 95
  start-page: 206
  issue: 1
  year: 2005
  ident: 790_CR12
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2004.08.002
– ident: 790_CR59
– volume: 31
  start-page: 597
  issue: 9
  year: 1984
  ident: 790_CR30
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.1984.325303
– volume: 43
  start-page: 357
  issue: 3
  year: 2005
  ident: 790_CR23
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345813
– volume: 42
  start-page: 1887
  year: 1971
  ident: 790_CR27
  publication-title: Ann Stat
  doi: 10.1214/aoms/1177693054
– ident: 790_CR8
  doi: 10.5772/5526
– volume: 91
  start-page: 401
  issue: 433
  year: 1996
  ident: 790_CR31
  publication-title: J Am Stat Assoc
  doi: 10.2307/2291420
– volume-title: Elements of statistical reasoning
  year: 1999
  ident: 790_CR44
– ident: 790_CR2
  doi: 10.1007/3-540-45681-3_2
– volume: 32
  start-page: 12
  issue: 1
  year: 1978
  ident: 790_CR42
  publication-title: Am Stat
  doi: 10.2307/2683468
– volume-title: Factor analysis in chemistry
  year: 1991
  ident: 790_CR38
– start-page: 57
  volume-title: Detection of outliers. WIREs Comp Stat 1
  year: 2009
  ident: 790_CR26
– volume: 54
  start-page: 761
  issue: 3
  year: 1992
  ident: 790_CR25
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1992.tb01449.x
– start-page: 193
  volume-title: Encyclopedia of statistical sciences
  year: 1982
  ident: 790_CR49
– start-page: 613
  volume-title: Encyclopedia of statistical sciences
  year: 1988
  ident: 790_CR48
– volume: 41
  start-page: 212
  year: 1999
  ident: 790_CR51
  publication-title: Technometrics
  doi: 10.2307/1270566
– volume-title: Nonparametric statistical methods
  year: 1973
  ident: 790_CR29
– volume-title: Pattern classification
  year: 2000
  ident: 790_CR16
– volume: 11
  start-page: 1
  issue: 1
  year: 1969
  ident: 790_CR24
  publication-title: Technometrics
  doi: 10.2307/1266761
– volume-title: Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers
  year: 2005
  ident: 790_CR4
– volume-title: Exploratory data analysis
  year: 1977
  ident: 790_CR56
– volume: 1
  start-page: 4850
  year: 2010
  ident: 790_CR40
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 39
  start-page: 175
  issue: 2
  year: 2007
  ident: 790_CR17
  publication-title: Behav Res Method
  doi: 10.3758/BF03193146
– volume-title: Identification of outliers
  year: 1980
  ident: 790_CR28
  doi: 10.1007/978-94-015-3994-4
– ident: 790_CR34
  doi: 10.1109/FUZZY.1999.793233
– volume: 50
  start-page: 295
  issue: 3
  year: 2001
  ident: 790_CR47
  publication-title: Statistician
  doi: 10.1111/1467-9884.00279
– volume: 58
  start-page: 263
  issue: 3
  year: 1990
  ident: 790_CR55
  publication-title: Int Stat Rev
  doi: 10.2307/1403809
– volume-title: Digital image processing
  year: 2002
  ident: 790_CR22
– volume: 53
  start-page: 382
  issue: 4
  year: 1999
  ident: 790_CR52
  publication-title: Am Stat
  doi: 10.2307/2686061
– volume: 44
  start-page: 307
  issue: 4
  year: 2002
  ident: 790_CR41
  publication-title: Technometrics
  doi: 10.1198/004017002188618509
– volume-title: Computer vision
  year: 2001
  ident: 790_CR53
– ident: 790_CR9
– volume: 15
  start-page: 1934
  issue: 7
  year: 2006
  ident: 790_CR5
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.877067
– volume: 177
  start-page: 303
  year: 2009
  ident: 790_CR1
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2008.10.019
– volume: 1
  start-page: 356
  year: 1973
  ident: 790_CR20
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02407675
– ident: 790_CR61
  doi: 10.1007/978-3-642-01307-2_84
– volume: 12
  start-page: 171
  year: 1950
  ident: 790_CR13
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1950.tb00054.x
– volume-title: Robust regression and outlier detection
  year: 1987
  ident: 790_CR50
  doi: 10.1002/0471725382
– volume: 34
  start-page: 307
  issue: 3
  year: 1992
  ident: 790_CR21
  publication-title: Technometrics
  doi: 10.2307/1270037
– volume-title: Practical nonparametric statistics
  year: 1980
  ident: 790_CR11
– volume: 88
  start-page: 782
  year: 1993
  ident: 790_CR14
  publication-title: J Am Stat Assoc
  doi: 10.2307/2290763
– ident: 790_CR33
  doi: 10.1145/1645953.1646195
– ident: 790_CR7
  doi: 10.1145/342009.335388
– volume: 76
  start-page: 378
  issue: 5
  year: 1971
  ident: 790_CR19
  publication-title: Psychol Bull
  doi: 10.1037/h0031619
– volume: 42
  start-page: 524
  year: 2004
  ident: 790_CR43
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02350994
– volume-title: Density estimation for statistics and data analysis
  year: 1986
  ident: 790_CR54
  doi: 10.1007/978-1-4899-3324-9
– volume: 41
  start-page: 1149
  issue: 4
  year: 2009
  ident: 790_CR18
  publication-title: Behav Res Methods
  doi: 10.3758/BRM.41.4.1149
– volume: 21
  start-page: 327
  issue: 4
  year: 1999
  ident: 790_CR36
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.761263
– volume: 3
  start-page: 148
  issue: 2
  year: 2003
  ident: 790_CR57
  publication-title: Stat J
  doi: 10.1177/1536867X0300300204
– volume-title: Applied logistic regression
  year: 2000
  ident: 790_CR35
– reference: 16830913 - IEEE Trans Image Process. 2006 Jul;15(7):1934-8
– reference: 16035224 - Med Biol Eng Comput. 2005 May;43(3):357-64
– reference: 15320462 - Med Biol Eng Comput. 2004 Jul;42(4):524-31
– reference: 21096649 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4850-3
– reference: 17695343 - Behav Res Methods. 2007 May;39(2):175-91
– reference: 10677477 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6
– reference: 19897823 - Behav Res Methods. 2009 Nov;41(4):1149-60
– reference: 20719694 - J Electromyogr Kinesiol. 1997 Jun;7(2):87-96
– reference: 4774377 - Ann Biomed Eng. 1973 Mar;1(3):356-67
– reference: 19010353 - J Neurosci Methods. 2009 Mar 15;177(2):303-10
– reference: 6490036 - IEEE Trans Biomed Eng. 1984 Sep;31(9):597-604
SSID ssj0021524
Score 2.1971788
Snippet Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG)....
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG)....
SourceID csuc
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Adult
Algorithms
Arrays
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Channels
Computer Applications
Data mining
Elbow
Electrodes
Electromiografia
Electromyography
Electromyography - methods
Electrònica biomèdica
Enginyeria biomèdica
Focusing
Human Physiology
Humans
Image processing systems
Imaging
Male
Medical equipment
Methods
Multivariate analysis
Muscle, Skeletal - physiology
Muscles
Muscular system
Original Article
Radiology
Recording
Regression analysis
Sensitivity and Specificity
Signal processing
Signal Processing, Computer-Assisted
Skin
Studies
Test sets
Young Adult
Àrees temàtiques de la UPC
SummonAdditionalLinks – databaseName: ProQuest Central (via ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcQX8dtYlRV8UhY3u5ts8iCipaUIV0Us9G3Zr4NCzdW75KH_vTP5KqK9hwTCbkh2Mrvzm8zsbwDeIoJ1aKcD9z4arqMS3K9kwT36KlWlo8kd7R1enpYnZ_rreXG-B8tpLwylVU5rYr9Qx3Wgf-Qf6lzlSqtKf7r6zaloFAVXpwoabqysED_2DGN3YF8SMdYC9r8cnX7_MXtgaKz0nNOI0HoKc_Z76dD2URYmetemFtz8ZagWYduF_4HQfwKovV06fgD3R0DJPg8a8BD2UvMI7i7HkPljOPzWtYgzNyymtk-7athFw4ilmEdKXm-v2bbbrFxIbCyJ8-t6oLG-CIyyO1A_n8DZ8dHPwxM-Vk7gQRvT8ioiaE7o2fg8livEaIX3RYy-droOJrgghJcJzVehcP6hP-1iQE8v9dY6KK-ewqJZN-k5sIT4o8yrkEQw2ITfryjKqPUqFcaomDIQk5hsGGnFqbrFpb0hRCbJWpSsJclak8G7-ZargVNjd2eUvcX1P22Cay3xYc8XdEhhJJ6ISD-Dg-kL2XEubu2sORm8mVtxElFkxDVp3W1tXtKWWlEKfBy7pQ-lKGijjNrRRZYV-q8an_RsUI95fDIv60ormcH7SV9u3vDWwb_YOZ4DuIfwTQ4_hF7Cot106RVCpNa_HhX_D6OPCtc
  priority: 102
  providerName: ProQuest
Title Outlier detection in high-density surface electromyographic signals
URI https://link.springer.com/article/10.1007/s11517-011-0790-7
https://www.ncbi.nlm.nih.gov/pubmed/21698432
https://www.proquest.com/docview/913134384
https://www.proquest.com/docview/1671340607
https://www.proquest.com/docview/913447373
https://www.proquest.com/docview/926889944
https://recercat.cat/handle/2072/206858
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-0444
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYS4QHmHlspInECuHNuJk-NS7bYCtSDUlZaTFT9WqmhTtEkO5dczzmsFtJV6iKPETvzOfJMZfwZ4jwi2QDltqTFOUekEo2bFE2pQV8ky6VRchLXDJ6fp8UJ-XibLfh13NXi7DybJ9ku9WeyGwim4SaL6q3JG1RZst3RbE9ieHv34Mhv1LBRJcvRcRAA9GDNveslf4mhiq8beBDX_M5O20mf-BM6GcndOJz8Pmtoc2N__UDres2I78LhHo2TaDZ-n8MCXz-DhSW9vfw6HX5saQeqaOF-3PlslOS9JoDimLni-19ekatarwnrS76dzed1xYJ9bElxDcHC_gMV8dnZ4TPttF6iVStU0c4i4PapFJnbpCgFeYkzinMkLmVtlC8uY4R5lXyJw8qIyXjiLaqJvRb0VRryESXlV-tdAPIKXNM6sZ1ZhFHZ-kqROypVPlBLOR8CG1te25yQPW2Nc6A2bcmgcjY2jQ-NoFcGH8ZFfHSHH3YmxSzUKD7-2Ra0DmfZ4EQ7OFMcgsPBHsDt0vO4ncqXzWMRCikxG8G6MxRkYzCpF6a-aSsdpWI_LUobZkVvSBP8GqYQSdyThaYbKr8ScXnWjbqwfj9M8k4JH8HEYQZsS3lr5N_dKvQuPEAvy7u_SHkzqdePfIt6qzT5sqaXCMJsf7fdzDc-fZqffvuPdBZ_-AY-rIlk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrQS8VJxtWg4jwQvIIrGdOHmoEJRWW9pdEGqlvpn4WKkSzbabRGh_HP-Nca4KQfetD4kUxTk8mfF8k7kAXiOCzVFPG6q1lVRYHlI9YzHVaKukqbAyyn3u8GSajE_Fl7P4bA1-97kwPqyyXxObhdrOjf9H_j6LeMQFT8WHyyvqm0Z552rfQSPvOivY3abCWJfXceSWv9CCK3cPP-PnfsPYwf7J3ph2TQaoEVJWNLWILx0aATqyyQzhTKx1bK3OcpEZaXIThpo5XOljjqyKpmduDRpFrlFshmuO970D64KLDG2_9U_702_fB4sPlaMYYigRyvdu1SZ3D3Wtj_pEa15mIZV_KcaRKWvzP9D7j8O20YMHD2CjA7DkY8txD2HNFY_g7qRz0T-Gva91hbh2QayrmjCvgpwXxFdFptYHy1dLUtaLWW4c6VrwXCzbstnnhvhoEpSHJ3B6K0R8CqNiXrgtIA7xThKlxoVG4inklzhOrBAzF0vJrQsg7MmkTFfG3HfT-KmuCzB7yiqkrPKUVTKAt8Mll20Nj9WDkfYK9Y1bmLxSvv72cOA3FkqGO1-4P4Cd_gupTvZLNXBqAK-Gsyi03hOTF25elypKfApvmIT4OHLDGB8SISSXfMUQlqRoLwt80mbLHsP8WJRkqeAsgHc9v1y_4Y2T3145n5dwb3wyOVbHh9OjHbiP0JG1P6Oewaha1O45wrNKv-iEgMCP25a7P0goR-E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRaq4oJZX01IwElxAVhPbiZNDVaGWVUtp4UClvZn4EakSZMsmEdqfxr9jnNcKQffWw660ipOsJzOebzKfZwBeI4LN0U8bqrWVVFgeUl2wmGqMVdJUWBnlfu_wxWVyeiU-zuLZBvwe9sJ4WuWwJrYLtZ0b_478IIt4xAVPxUHRsyK-nEyPbn5S30DKJ1qHbhqdhpy75S-M3qrDsxN81G8Ym374enxK-wYD1Agpa5paxJYOAwAd2aRAKBNrHVurs1xkRprchKFmDlf5mKOaYtiZW4MBkWudmuGa43XvwX3JeebZhHK2ivXQLYqRPYkgfkiotrv20Mt6vifG8TILqfzLJU5M1Zj_wd1_UrWtB5xuwcMeupL3na5tw4YrH8HmRZ-cfwzHn5saEe2CWFe3BK-SXJfE10Om1tPk6yWpmkWRG0f65js_ll3B7GtDPI8ELeEJXN2JCJ_CpJyXbgeIQ6STRKlxoZF4CDUljhMrROFiKbl1AYSDmJTpC5j7Phrf1ar0spesQskqL1klA3g7nnLTVe9YPxhlr9DTuIXJa-Urb48__IeFkuGXL9kfwN7whFRv9ZUadTSAV-NRNFefg8lLN28qFSV-826YhHg7cssYT4YQkku-ZghLUoyUBd7pWace4_xYlGSp4CyAd4O-rP7hrZPfXTufl7CJ1qY-nV2e78EDxIysewv1HCb1onH7iMtq_aK1AALf7trk_gA5-EV7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+detection+in+high-density+surface+electromyographic+signals&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Marateb%2C+Hamid+R&rft.au=Rojas-Mart%C3%ADnez%2C+Monica&rft.au=Mansourian%2C+Marjan&rft.au=Merletti%2C+Roberto&rft.date=2012-01-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=50&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1007%2Fs11517-011-0790-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon