Outlier detection in high-density surface electromyographic signals
Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 50; no. 1; pp. 79 - 89 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article Publication |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.01.2012
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-011-0790-7 |
Cover
| Abstract | Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called ‘outliers’ in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify ‘bad’ channels. The overall performance of this method was tested using the agreement rate against three experts’ opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. |
|---|---|
| AbstractList | Recently developed techniques allow the analysis
of surface EMG in multiple locations over the skin
surface (high-density surface electromyography,
HDsEMG). The detected signal includes information from
a greater proportion of the muscle of interest than conventional
clinical EMG. However, recording with many
electrodes simultaneously often implies bad-contacts,
which introduce large power-line interference in the corresponding
channels, and short-circuits that cause nearzero
single differential signals when using gel. Such signals
are called ‘outliers’ in data mining. In this work, outlier
detection (focusing on bad contacts) is discussed for
monopolar HDsEMG signals and a new method is proposed
to identify ‘bad’ channels. The overall performance
of this method was tested using the agreement rate against
three experts’ opinions. Three other outlier detection
methods were used for comparison. The training and test
sets for such methods were selected from HDsEMG signals
recorded in Triceps and Biceps Brachii in the upper arm
and Brachioradialis, Anconeus, and Pronator Teres in the
forearm. The sensitivity and specificity of this algorithm
were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called ‘outliers’ in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify ‘bad’ channels. The overall performance of this method was tested using the agreement rate against three experts’ opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 plus or minus 6.2 and 96.4 plus or minus 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.[PUBLICATION ABSTRACT] Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising. |
| Author | Mansourian, Marjan Merletti, Roberto Mañanas Villanueva, Miguel A. Rojas-Martínez, Monica Marateb, Hamid R. |
| Author_xml | – sequence: 1 givenname: Hamid R. surname: Marateb fullname: Marateb, Hamid R. email: hamid.marateb@polito.it organization: Laboratory for Engineering of the Neuromuscular Systems, Department of Electronics, Politecnico di Torino – sequence: 2 givenname: Monica surname: Rojas-Martínez fullname: Rojas-Martínez, Monica organization: Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, CREB, Department ESAII, Technical University of Catalonia, UPC – sequence: 3 givenname: Marjan surname: Mansourian fullname: Mansourian, Marjan organization: Department of Biostatistics and Epidemiology, Health School, Isfahan University of Medical Science – sequence: 4 givenname: Roberto surname: Merletti fullname: Merletti, Roberto organization: Laboratory for Engineering of the Neuromuscular Systems, Department of Electronics, Politecnico di Torino – sequence: 5 givenname: Miguel A. surname: Mañanas Villanueva fullname: Mañanas Villanueva, Miguel A. organization: Biomedical Engineering Research Centre, CREB, CIBER-BBN, Department ESAII, Technical University of Catalonia, UPC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21698432$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk2PFCEQholZ486u_gAvpuNFL60U0HwczcSvZJO96JnQdM0Mm55mBPow_146M5M1Jq4HqFR43heoqhtyNcUJCXkN9ANQqj5mgA5USwFaqgxt1TOyAiVqJoS4IisKgi6n-prc5PxAKYOOiRfkmoE0WnC2Iuv7uYwBUzNgQV9CnJowNbuw3bUDTjmUY5PntHEeGxwrkOL-GLfJHXbBNzlsJzfml-T5pgZ8dY635OeXzz_W39q7-6_f15_uWi-UKq0elGLIOtPDIDdgeNf33TD0xgnjlXee0p4hcNpxyTX23A1eC4pMShCe9_yWwMnX59nbhB6Td8VGFx6TZTGqWN2k7nTVvDtpDin-mjEXuw_Z4zi6CeOcrWFSa2OE-D8JXAjFFa_k-ydJkKqyVFJV0bd_oQ9xTkvRFr9Kcb3c_OYMzf0eB3tIYe_S0V66VAF1_niKOSfcWB-KW5pVkgujBWqXebCnebC143aZB6v-KNlFeTF_SsNOmlzZaYvp8c3_Fv0GXGPE5A |
| CitedBy_id | crossref_primary_10_1007_s11600_021_00639_w crossref_primary_10_1016_j_bspc_2024_107441 crossref_primary_10_3390_s23104759 crossref_primary_10_1109_TGRS_2021_3118921 crossref_primary_10_1371_journal_pone_0167954 crossref_primary_10_1038_s41597_020_00717_6 crossref_primary_10_1016_j_bbe_2013_09_001 crossref_primary_10_1109_TIM_2023_3320737 crossref_primary_10_1109_TNNLS_2021_3105595 crossref_primary_10_1016_j_bspc_2021_103122 crossref_primary_10_1088_1741_2552_acae0b crossref_primary_10_1109_TNSRE_2016_2515087 crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_32604_iasc_2023_032337 crossref_primary_10_1109_TBME_2016_2603463 crossref_primary_10_1140_epjs_s11734_024_01415_9 crossref_primary_10_1109_JBHI_2023_3262316 crossref_primary_10_1016_j_jelekin_2016_10_003 crossref_primary_10_1109_TNSRE_2020_2997213 crossref_primary_10_3390_app13116483 crossref_primary_10_1186_s12984_015_0011_y crossref_primary_10_1109_TIM_2014_2317296 crossref_primary_10_1371_journal_pone_0109943 crossref_primary_10_1016_j_bspc_2023_105414 crossref_primary_10_1109_TNSRE_2018_2813421 crossref_primary_10_1038_srep36571 crossref_primary_10_1016_j_bspc_2021_103127 crossref_primary_10_1186_1743_0003_9_85 crossref_primary_10_1016_j_bspc_2023_105800 crossref_primary_10_1109_JBHI_2021_3118810 crossref_primary_10_1109_TNSRE_2014_2299573 crossref_primary_10_4018_IJGHPC_336474 crossref_primary_10_1016_j_clinph_2016_02_005 crossref_primary_10_1109_TNSRE_2014_2366752 crossref_primary_10_1109_RBME_2022_3164797 crossref_primary_10_3389_fncom_2019_00014 |
| Cites_doi | 10.3758/BF03193146 10.2307/2290763 10.1037/h0031619 10.1016/j.jneumeth.2008.10.019 10.1109/34.761263 10.1007/BF02345813 10.2307/1266761 10.1111/1467-9884.00279 10.2307/1270037 10.1016/j.jmva.2004.08.002 10.2307/2686061 10.2307/2683468 10.1007/BF00206543 10.1214/aoms/1177693054 10.1109/TIP.2006.877067 10.1109/TBME.1984.325303 10.1016/S1050-6411(96)00024-7 10.2307/1270566 10.3758/BRM.41.4.1149 10.1007/BF02407675 10.1198/004017002188618509 10.1007/s10479-008-0371-9 10.2307/1403809 10.2307/2291420 10.1002/0471725382 10.1007/BF02350994 10.1109/87.974338 10.1073/pnas.97.4.1423 10.5772/5526 10.1007/3-540-45681-3_2 10.1111/j.2517-6161.1992.tb01449.x 10.1007/978-94-015-3994-4 10.1109/FUZZY.1999.793233 10.1007/978-3-642-01307-2_84 10.1111/j.2517-6161.1950.tb00054.x 10.1145/1645953.1646195 10.1145/342009.335388 10.1007/978-1-4899-3324-9 10.1177/1536867X0300300204 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial – sequence: 2 fullname: Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics |
| Copyright | International Federation for Medical and Biological Engineering 2011 International Federation for Medical and Biological Engineering 2012 info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2011 – notice: International Federation for Medical and Biological Engineering 2012 – notice: info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO XX2 |
| DOI | 10.1007/s11517-011-0790-7 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (via ProQuest) Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Medical Database Science Database (Proquest) Biological Science Database Biochemistry Abstracts 1 ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Recercat |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE Technology Research Database ProQuest Business Collection (Alumni Edition) Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 89 |
| ExternalDocumentID | oai_recercat_cat_2072_206858 2550434591 21698432 10_1007_s11517_011_0790_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO XX2 |
| ID | FETCH-LOGICAL-c477t-8d772e259b1d6f1935bb5ddb9a49c7cac00b2e13053638eb3adc840e26614c3b3 |
| IEDL.DBID | AGYKE |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Sat Oct 18 14:55:54 EDT 2025 Tue Oct 07 09:20:45 EDT 2025 Thu Sep 04 20:22:50 EDT 2025 Wed Oct 01 14:07:47 EDT 2025 Tue Oct 07 05:22:31 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Oct 01 06:47:31 EDT 2025 Fri Feb 21 02:31:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Robust statistics Multichannel surface electromyography Logistic regression Feature extraction Detection theory Multivariate outlier detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-8d772e259b1d6f1935bb5ddb9a49c7cac00b2e13053638eb3adc840e26614c3b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/206858 |
| PMID | 21698432 |
| PQID | 913134384 |
| PQPubID | 54161 |
| PageCount | 11 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_206858 proquest_miscellaneous_926889944 proquest_miscellaneous_913447373 proquest_miscellaneous_1671340607 proquest_journals_913134384 pubmed_primary_21698432 crossref_citationtrail_10_1007_s11517_011_0790_7 crossref_primary_10_1007_s11517_011_0790_7 springer_journals_10_1007_s11517_011_0790_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20120100 2012-01-00 2012-Jan 20120101 2012-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 1 year: 2012 text: 20120100 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2012 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | Ben-Gal, Maimon, Rockach (CR4) 2005 Geddes, Valentinuzzi (CR20) 1973; 1 Croux, Ruiz-Gazen (CR12) 2005; 95 CR39 Tukey (CR56) 1977 Westerweel (CR60) 1994; 16 Hosmer, Hollander, Wolfe (CR29) 1973 Randles, Kotz, Johnson (CR48) 1988 Kendall, McCreary, Provance (CR32) 1993 CR34 CR33 Hawkins (CR28) 1980 Bilodeau, Cincera, Arsenault, Gravel (CR6) 1997; 7 Lemeshow (CR35) 2000 Rodriguez, Kotz, Johnson (CR49) 1982 Faul, Erdfelder, Buchner, Lang (CR18) 2009; 41 Mosteller, Tukey (CR45) 1977 Bertalmio (CR5) 2006; 15 Penny, Jolliffe (CR47) 2001; 50 CR2 Duan, Xu, Liu, Lee (CR15) 2009; 168 Mcgill, Tukey, Larsen (CR42) 1978; 32 Mahalanobis (CR37) 1936; 2 Conover (CR11) 1980 CR8 CR7 Mewett, Reynolds, Nazeran (CR43) 2004; 42 Van Kerm (CR57) 2003; 3 CR9 Goldberg, Iglewicz (CR21) 1992; 34 Gonzalez, Woods (CR22) 2002 Silverman (CR54) 1986 Barnett, Lewis (CR3) 1994 Faul, Erdfelder, Lang, Buchner (CR17) 2007; 39 Malinowski (CR38) 1991 Grubbs (CR24) 1969; 11 Jones, Marron, Sheather (CR31) 1996; 91 Hadi (CR25) 1992; 54 Hadi, Rahmatullah Imon, Werner (CR26) 2009 Davies, Gather (CR14) 1993; 88 CR59 Inbar, Noujaim (CR30) 1984; 31 Minium, Clarke, Coladarci (CR44) 1999 Daniels (CR13) 1950; 12 Hampel (CR27) 1971; 42 Maronna, Zamar (CR41) 2002; 44 Cohen (CR10) 1988 Rousseeuw, Van Driessen (CR51) 1999; 41 Duda, Hart, Stork (CR16) 2000 Marateb, Rojas-Martínez, Mañanas Villanueva, Merletti (CR40) 2010; 1 López, Lumbreras, Serrat, Villanueva (CR36) 1999; 21 Small (CR55) 1990; 58 Grönlund, Roeleveld, Holtermann, Karlsson (CR23) 2005; 43 Pearson (CR46) 2002; 10 Allen (CR1) 2009; 177 Fleiss (CR19) 1971; 76 Rousseeuw, Leory (CR50) 1987 Shapiro, Stockman (CR53) 2001 CR61 Varid, Zhang (CR58) 2000; 97 Rousseeuw, Ruts, Tukey (CR52) 1999; 53 790_CR59 C Croux (790_CR12) 2005; 95 J Westerweel (790_CR60) 1994; 16 PJ Rousseeuw (790_CR51) 1999; 41 MC Jones (790_CR31) 1996; 91 PC Mahalanobis (790_CR37) 1936; 2 JL Fleiss (790_CR19) 1971; 76 M Bertalmio (790_CR5) 2006; 15 F Faul (790_CR18) 2009; 41 M Bilodeau (790_CR6) 1997; 7 LA Geddes (790_CR20) 1973; 1 KM Goldberg (790_CR21) 1992; 34 CG Small (790_CR55) 1990; 58 FR Hampel (790_CR27) 1971; 42 790_CR61 DT Mewett (790_CR43) 2004; 42 AS Hadi (790_CR25) 1992; 54 AS Hadi (790_CR26) 2009 R Mcgill (790_CR42) 1978; 32 LG Shapiro (790_CR53) 2001 RC Gonzalez (790_CR22) 2002 ER Malinowski (790_CR38) 1991 P Van Kerm (790_CR57) 2003; 3 C Grönlund (790_CR23) 2005; 43 HE Daniels (790_CR13) 1950; 12 JW Tukey (790_CR56) 1977 RN Rodriguez (790_CR49) 1982 EW Minium (790_CR44) 1999 PJ Rousseeuw (790_CR52) 1999; 53 790_CR39 RA Maronna (790_CR41) 2002; 44 KI Penny (790_CR47) 2001; 50 L Davies (790_CR14) 1993; 88 F Faul (790_CR17) 2007; 39 790_CR33 F Grubbs (790_CR24) 1969; 11 790_CR34 WJ Conover (790_CR11) 1980 DM Hawkins (790_CR28) 1980 DP Allen (790_CR1) 2009; 177 HR Marateb (790_CR40) 2010; 1 AM López (790_CR36) 1999; 21 J Cohen (790_CR10) 1988 V Barnett (790_CR3) 1994 FP Kendall (790_CR32) 1993 F Mosteller (790_CR45) 1977 DW Hosmer (790_CR29) 1973 RH Randles (790_CR48) 1988 L Duan (790_CR15) 2009; 168 S Lemeshow (790_CR35) 2000 RK Pearson (790_CR46) 2002; 10 PJ Rousseeuw (790_CR50) 1987 BW Silverman (790_CR54) 1986 Y Varid (790_CR58) 2000; 97 RO Duda (790_CR16) 2000 790_CR9 790_CR8 I Ben-Gal (790_CR4) 2005 790_CR2 790_CR7 GF Inbar (790_CR30) 1984; 31 10677477 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6 16035224 - Med Biol Eng Comput. 2005 May;43(3):357-64 19897823 - Behav Res Methods. 2009 Nov;41(4):1149-60 19010353 - J Neurosci Methods. 2009 Mar 15;177(2):303-10 6490036 - IEEE Trans Biomed Eng. 1984 Sep;31(9):597-604 16830913 - IEEE Trans Image Process. 2006 Jul;15(7):1934-8 15320462 - Med Biol Eng Comput. 2004 Jul;42(4):524-31 4774377 - Ann Biomed Eng. 1973 Mar;1(3):356-67 20719694 - J Electromyogr Kinesiol. 1997 Jun;7(2):87-96 21096649 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4850-3 17695343 - Behav Res Methods. 2007 May;39(2):175-91 |
| References_xml | – year: 1994 ident: CR3 publication-title: Outliers in statistical data – start-page: 613 year: 1988 end-page: 616 ident: CR48 article-title: Wilcoxon signed rank test publication-title: Encyclopedia of statistical sciences – volume: 39 start-page: 175 issue: 2 year: 2007 end-page: 191 ident: CR17 article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences publication-title: Behav Res Method doi: 10.3758/BF03193146 – volume: 88 start-page: 782 year: 1993 end-page: 792 ident: CR14 article-title: The identification of multiple outliers publication-title: J Am Stat Assoc doi: 10.2307/2290763 – volume: 76 start-page: 378 issue: 5 year: 1971 end-page: 382 ident: CR19 article-title: Measuring nominal scale agreement among many raters publication-title: Psychol Bull doi: 10.1037/h0031619 – year: 1993 ident: CR32 publication-title: Muscles and testing function – volume: 177 start-page: 303 year: 2009 end-page: 310 ident: CR1 article-title: A frequency domain hampel filter for blind rejection of sinusoidal interference from electromyograms publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2008.10.019 – volume: 21 start-page: 327 issue: 4 year: 1999 end-page: 335 ident: CR36 article-title: Evaluation of methods for ridge and valley detection publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.761263 – year: 2002 ident: CR22 publication-title: Digital image processing – ident: CR39 – volume: 3 start-page: 148 issue: 2 year: 2003 end-page: 156 ident: CR57 article-title: Adaptive kernel density estimation publication-title: Stat J – volume: 43 start-page: 357 issue: 3 year: 2005 end-page: 364 ident: CR23 article-title: On-line signal quality estimation of multichannel surface electromyograms publication-title: Med Biol Eng Comput doi: 10.1007/BF02345813 – ident: CR61 – ident: CR8 – volume: 11 start-page: 1 issue: 1 year: 1969 end-page: 21 ident: CR24 article-title: Procedures for detecting outlying observations in samples publication-title: Technometrics doi: 10.2307/1266761 – year: 1980 ident: CR28 publication-title: Identification of outliers – year: 1986 ident: CR54 publication-title: Density estimation for statistics and data analysis – year: 1980 ident: CR11 publication-title: Practical nonparametric statistics – volume: 12 start-page: 171 year: 1950 end-page: 181 ident: CR13 article-title: Rank correlation and population models publication-title: J R Stat Soc B – year: 2000 ident: CR16 publication-title: Pattern classification – year: 1973 ident: CR29 publication-title: Nonparametric statistical methods – volume: 50 start-page: 295 issue: 3 year: 2001 end-page: 308 ident: CR47 article-title: A comparison of multivariate outlier detection methods for clinical laboratory safety data publication-title: Statistician doi: 10.1111/1467-9884.00279 – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: CR37 article-title: On the generalized distance in statistics publication-title: Proc Nat Inst Sci India – ident: CR9 – volume: 34 start-page: 307 issue: 3 year: 1992 end-page: 320 ident: CR21 article-title: Bivariate extensions of boxplot publication-title: Technometrics doi: 10.2307/1270037 – volume: 95 start-page: 206 issue: 1 year: 2005 end-page: 226 ident: CR12 article-title: High breakdown estimators for principal components: the projection-pursuit approach revisited publication-title: J Multivar Anal doi: 10.1016/j.jmva.2004.08.002 – year: 2005 ident: CR4 article-title: Outlier detection publication-title: Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers – volume: 53 start-page: 382 issue: 4 year: 1999 end-page: 387 ident: CR52 article-title: The bagplot: a bivariate boxplot publication-title: Am Stat doi: 10.2307/2686061 – start-page: 57 year: 2009 end-page: 70 ident: CR26 publication-title: Detection of outliers. WIREs Comp Stat 1 – volume: 32 start-page: 12 issue: 1 year: 1978 end-page: 16 ident: CR42 article-title: Variations of box plots publication-title: Am Stat doi: 10.2307/2683468 – volume: 16 start-page: 236 year: 1994 end-page: 247 ident: CR60 article-title: Efficient detection of spurious vectors in particle image velocimetry data publication-title: Exp Fluids doi: 10.1007/BF00206543 – volume: 42 start-page: 1887 year: 1971 end-page: 1896 ident: CR27 article-title: A general qualitative measure of robustness publication-title: Ann Stat doi: 10.1214/aoms/1177693054 – volume: 15 start-page: 1934 issue: 7 year: 2006 end-page: 1938 ident: CR5 article-title: Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.877067 – ident: CR2 – ident: CR33 – year: 1977 ident: CR56 publication-title: Exploratory data analysis – start-page: 193 year: 1982 end-page: 204 ident: CR49 article-title: Correlation publication-title: Encyclopedia of statistical sciences – volume: 31 start-page: 597 issue: 9 year: 1984 end-page: 604 ident: CR30 article-title: On surface EMG spectral characterization and its application to diagnostic classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1984.325303 – volume: 7 start-page: 87 issue: 2 year: 1997 end-page: 96 ident: CR6 article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(96)00024-7 – volume: 1 start-page: 4850 year: 2010 end-page: 4853 ident: CR40 article-title: Robust outlier detection in high-density surface electromyographic signals publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 41 start-page: 212 year: 1999 end-page: 223 ident: CR51 article-title: A fast algorithm for the minimum covariance determinant estimator publication-title: Technometrics doi: 10.2307/1270566 – volume: 41 start-page: 1149 issue: 4 year: 2009 end-page: 1160 ident: CR18 article-title: Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses publication-title: Behav Res Methods doi: 10.3758/BRM.41.4.1149 – volume: 1 start-page: 356 year: 1973 end-page: 367 ident: CR20 article-title: Temporal changes in electrode impedance while recording the electrocardiogram with dry electrodes publication-title: Ann Biomed Eng doi: 10.1007/BF02407675 – volume: 44 start-page: 307 issue: 4 year: 2002 end-page: 317 ident: CR41 article-title: Robust estimates of location and dispersion of high-dimensional datasets publication-title: Technometrics doi: 10.1198/004017002188618509 – volume: 54 start-page: 761 issue: 3 year: 1992 end-page: 771 ident: CR25 article-title: Identifying outliers in multivariate data publication-title: J R Stat Soc B – volume: 168 start-page: 151 issue: 1 year: 2009 end-page: 168 ident: CR15 article-title: Cluster-based outlier detection publication-title: Ann Oper Res doi: 10.1007/s10479-008-0371-9 – volume: 58 start-page: 263 issue: 3 year: 1990 end-page: 277 ident: CR55 article-title: A survey of multidimensional medians publication-title: Int Stat Rev doi: 10.2307/1403809 – volume: 91 start-page: 401 issue: 433 year: 1996 end-page: 407 ident: CR31 article-title: A brief survey of bandwidth selection for density estimation publication-title: J Am Stat Assoc doi: 10.2307/2291420 – year: 2001 ident: CR53 publication-title: Computer vision – year: 1988 ident: CR10 publication-title: Statistical power analysis for the behavioral sciences – year: 1987 ident: CR50 publication-title: Robust regression and outlier detection doi: 10.1002/0471725382 – year: 1991 ident: CR38 publication-title: Factor analysis in chemistry – ident: CR34 – year: 1977 ident: CR45 publication-title: Data analysis and regression: a second course in statistics – ident: CR7 – volume: 42 start-page: 524 year: 2004 end-page: 531 ident: CR43 article-title: Reducing power line interference in digitized electromyograms recordings by spectrum interpolation publication-title: Med Biol Eng Comput doi: 10.1007/BF02350994 – ident: CR59 – volume: 10 start-page: 55 year: 2002 end-page: 63 ident: CR46 article-title: Outliers in process modeling and identification publication-title: IEEE Trans Control Syst Technol doi: 10.1109/87.974338 – volume: 97 start-page: 1423 issue: 4 year: 2000 end-page: 1426 ident: CR58 article-title: The multivariate L1-median and associated data depth publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.4.1423 – year: 2000 ident: CR35 publication-title: Applied logistic regression – year: 1999 ident: CR44 publication-title: Elements of statistical reasoning – ident: 790_CR39 – volume: 7 start-page: 87 issue: 2 year: 1997 ident: 790_CR6 publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(96)00024-7 – volume: 16 start-page: 236 year: 1994 ident: 790_CR60 publication-title: Exp Fluids doi: 10.1007/BF00206543 – volume: 10 start-page: 55 year: 2002 ident: 790_CR46 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/87.974338 – volume: 168 start-page: 151 issue: 1 year: 2009 ident: 790_CR15 publication-title: Ann Oper Res doi: 10.1007/s10479-008-0371-9 – volume: 2 start-page: 49 year: 1936 ident: 790_CR37 publication-title: Proc Nat Inst Sci India – volume-title: Data analysis and regression: a second course in statistics year: 1977 ident: 790_CR45 – volume-title: Outliers in statistical data year: 1994 ident: 790_CR3 – volume-title: Muscles and testing function year: 1993 ident: 790_CR32 – volume: 97 start-page: 1423 issue: 4 year: 2000 ident: 790_CR58 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.4.1423 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: 790_CR10 – volume: 95 start-page: 206 issue: 1 year: 2005 ident: 790_CR12 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2004.08.002 – ident: 790_CR59 – volume: 31 start-page: 597 issue: 9 year: 1984 ident: 790_CR30 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1984.325303 – volume: 43 start-page: 357 issue: 3 year: 2005 ident: 790_CR23 publication-title: Med Biol Eng Comput doi: 10.1007/BF02345813 – volume: 42 start-page: 1887 year: 1971 ident: 790_CR27 publication-title: Ann Stat doi: 10.1214/aoms/1177693054 – ident: 790_CR8 doi: 10.5772/5526 – volume: 91 start-page: 401 issue: 433 year: 1996 ident: 790_CR31 publication-title: J Am Stat Assoc doi: 10.2307/2291420 – volume-title: Elements of statistical reasoning year: 1999 ident: 790_CR44 – ident: 790_CR2 doi: 10.1007/3-540-45681-3_2 – volume: 32 start-page: 12 issue: 1 year: 1978 ident: 790_CR42 publication-title: Am Stat doi: 10.2307/2683468 – volume-title: Factor analysis in chemistry year: 1991 ident: 790_CR38 – start-page: 57 volume-title: Detection of outliers. WIREs Comp Stat 1 year: 2009 ident: 790_CR26 – volume: 54 start-page: 761 issue: 3 year: 1992 ident: 790_CR25 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1992.tb01449.x – start-page: 193 volume-title: Encyclopedia of statistical sciences year: 1982 ident: 790_CR49 – start-page: 613 volume-title: Encyclopedia of statistical sciences year: 1988 ident: 790_CR48 – volume: 41 start-page: 212 year: 1999 ident: 790_CR51 publication-title: Technometrics doi: 10.2307/1270566 – volume-title: Nonparametric statistical methods year: 1973 ident: 790_CR29 – volume-title: Pattern classification year: 2000 ident: 790_CR16 – volume: 11 start-page: 1 issue: 1 year: 1969 ident: 790_CR24 publication-title: Technometrics doi: 10.2307/1266761 – volume-title: Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers year: 2005 ident: 790_CR4 – volume-title: Exploratory data analysis year: 1977 ident: 790_CR56 – volume: 1 start-page: 4850 year: 2010 ident: 790_CR40 publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 39 start-page: 175 issue: 2 year: 2007 ident: 790_CR17 publication-title: Behav Res Method doi: 10.3758/BF03193146 – volume-title: Identification of outliers year: 1980 ident: 790_CR28 doi: 10.1007/978-94-015-3994-4 – ident: 790_CR34 doi: 10.1109/FUZZY.1999.793233 – volume: 50 start-page: 295 issue: 3 year: 2001 ident: 790_CR47 publication-title: Statistician doi: 10.1111/1467-9884.00279 – volume: 58 start-page: 263 issue: 3 year: 1990 ident: 790_CR55 publication-title: Int Stat Rev doi: 10.2307/1403809 – volume-title: Digital image processing year: 2002 ident: 790_CR22 – volume: 53 start-page: 382 issue: 4 year: 1999 ident: 790_CR52 publication-title: Am Stat doi: 10.2307/2686061 – volume: 44 start-page: 307 issue: 4 year: 2002 ident: 790_CR41 publication-title: Technometrics doi: 10.1198/004017002188618509 – volume-title: Computer vision year: 2001 ident: 790_CR53 – ident: 790_CR9 – volume: 15 start-page: 1934 issue: 7 year: 2006 ident: 790_CR5 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.877067 – volume: 177 start-page: 303 year: 2009 ident: 790_CR1 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2008.10.019 – volume: 1 start-page: 356 year: 1973 ident: 790_CR20 publication-title: Ann Biomed Eng doi: 10.1007/BF02407675 – ident: 790_CR61 doi: 10.1007/978-3-642-01307-2_84 – volume: 12 start-page: 171 year: 1950 ident: 790_CR13 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1950.tb00054.x – volume-title: Robust regression and outlier detection year: 1987 ident: 790_CR50 doi: 10.1002/0471725382 – volume: 34 start-page: 307 issue: 3 year: 1992 ident: 790_CR21 publication-title: Technometrics doi: 10.2307/1270037 – volume-title: Practical nonparametric statistics year: 1980 ident: 790_CR11 – volume: 88 start-page: 782 year: 1993 ident: 790_CR14 publication-title: J Am Stat Assoc doi: 10.2307/2290763 – ident: 790_CR33 doi: 10.1145/1645953.1646195 – ident: 790_CR7 doi: 10.1145/342009.335388 – volume: 76 start-page: 378 issue: 5 year: 1971 ident: 790_CR19 publication-title: Psychol Bull doi: 10.1037/h0031619 – volume: 42 start-page: 524 year: 2004 ident: 790_CR43 publication-title: Med Biol Eng Comput doi: 10.1007/BF02350994 – volume-title: Density estimation for statistics and data analysis year: 1986 ident: 790_CR54 doi: 10.1007/978-1-4899-3324-9 – volume: 41 start-page: 1149 issue: 4 year: 2009 ident: 790_CR18 publication-title: Behav Res Methods doi: 10.3758/BRM.41.4.1149 – volume: 21 start-page: 327 issue: 4 year: 1999 ident: 790_CR36 publication-title: IEEE Trans Pattern Anal doi: 10.1109/34.761263 – volume: 3 start-page: 148 issue: 2 year: 2003 ident: 790_CR57 publication-title: Stat J doi: 10.1177/1536867X0300300204 – volume-title: Applied logistic regression year: 2000 ident: 790_CR35 – reference: 16830913 - IEEE Trans Image Process. 2006 Jul;15(7):1934-8 – reference: 16035224 - Med Biol Eng Comput. 2005 May;43(3):357-64 – reference: 15320462 - Med Biol Eng Comput. 2004 Jul;42(4):524-31 – reference: 21096649 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4850-3 – reference: 17695343 - Behav Res Methods. 2007 May;39(2):175-91 – reference: 10677477 - Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6 – reference: 19897823 - Behav Res Methods. 2009 Nov;41(4):1149-60 – reference: 20719694 - J Electromyogr Kinesiol. 1997 Jun;7(2):87-96 – reference: 4774377 - Ann Biomed Eng. 1973 Mar;1(3):356-67 – reference: 19010353 - J Neurosci Methods. 2009 Mar 15;177(2):303-10 – reference: 6490036 - IEEE Trans Biomed Eng. 1984 Sep;31(9):597-604 |
| SSID | ssj0021524 |
| Score | 2.1971788 |
| Snippet | Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG).... Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG).... |
| SourceID | csuc proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 79 |
| SubjectTerms | Adult Algorithms Arrays Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Channels Computer Applications Data mining Elbow Electrodes Electromiografia Electromyography Electromyography - methods Electrònica biomèdica Enginyeria biomèdica Focusing Human Physiology Humans Image processing systems Imaging Male Medical equipment Methods Multivariate analysis Muscle, Skeletal - physiology Muscles Muscular system Original Article Radiology Recording Regression analysis Sensitivity and Specificity Signal processing Signal Processing, Computer-Assisted Skin Studies Test sets Young Adult Àrees temàtiques de la UPC |
| SummonAdditionalLinks | – databaseName: ProQuest Central (via ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcQX8dtYlRV8UhY3u5ts8iCipaUIV0Us9G3Zr4NCzdW75KH_vTP5KqK9hwTCbkh2Mrvzm8zsbwDeIoJ1aKcD9z4arqMS3K9kwT36KlWlo8kd7R1enpYnZ_rreXG-B8tpLwylVU5rYr9Qx3Wgf-Qf6lzlSqtKf7r6zaloFAVXpwoabqysED_2DGN3YF8SMdYC9r8cnX7_MXtgaKz0nNOI0HoKc_Z76dD2URYmetemFtz8ZagWYduF_4HQfwKovV06fgD3R0DJPg8a8BD2UvMI7i7HkPljOPzWtYgzNyymtk-7athFw4ilmEdKXm-v2bbbrFxIbCyJ8-t6oLG-CIyyO1A_n8DZ8dHPwxM-Vk7gQRvT8ioiaE7o2fg8livEaIX3RYy-droOJrgghJcJzVehcP6hP-1iQE8v9dY6KK-ewqJZN-k5sIT4o8yrkEQw2ITfryjKqPUqFcaomDIQk5hsGGnFqbrFpb0hRCbJWpSsJclak8G7-ZargVNjd2eUvcX1P22Cay3xYc8XdEhhJJ6ISD-Dg-kL2XEubu2sORm8mVtxElFkxDVp3W1tXtKWWlEKfBy7pQ-lKGijjNrRRZYV-q8an_RsUI95fDIv60ormcH7SV9u3vDWwb_YOZ4DuIfwTQ4_hF7Cot106RVCpNa_HhX_D6OPCtc priority: 102 providerName: ProQuest |
| Title | Outlier detection in high-density surface electromyographic signals |
| URI | https://link.springer.com/article/10.1007/s11517-011-0790-7 https://www.ncbi.nlm.nih.gov/pubmed/21698432 https://www.proquest.com/docview/913134384 https://www.proquest.com/docview/1671340607 https://www.proquest.com/docview/913447373 https://www.proquest.com/docview/926889944 https://recercat.cat/handle/2072/206858 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-0444 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-0444 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYS4QHmHlspInECuHNuJk-NS7bYCtSDUlZaTFT9WqmhTtEkO5dczzmsFtJV6iKPETvzOfJMZfwZ4jwi2QDltqTFOUekEo2bFE2pQV8ky6VRchLXDJ6fp8UJ-XibLfh13NXi7DybJ9ku9WeyGwim4SaL6q3JG1RZst3RbE9ieHv34Mhv1LBRJcvRcRAA9GDNveslf4mhiq8beBDX_M5O20mf-BM6GcndOJz8Pmtoc2N__UDres2I78LhHo2TaDZ-n8MCXz-DhSW9vfw6HX5saQeqaOF-3PlslOS9JoDimLni-19ekatarwnrS76dzed1xYJ9bElxDcHC_gMV8dnZ4TPttF6iVStU0c4i4PapFJnbpCgFeYkzinMkLmVtlC8uY4R5lXyJw8qIyXjiLaqJvRb0VRryESXlV-tdAPIKXNM6sZ1ZhFHZ-kqROypVPlBLOR8CG1te25yQPW2Nc6A2bcmgcjY2jQ-NoFcGH8ZFfHSHH3YmxSzUKD7-2Ra0DmfZ4EQ7OFMcgsPBHsDt0vO4ncqXzWMRCikxG8G6MxRkYzCpF6a-aSsdpWI_LUobZkVvSBP8GqYQSdyThaYbKr8ScXnWjbqwfj9M8k4JH8HEYQZsS3lr5N_dKvQuPEAvy7u_SHkzqdePfIt6qzT5sqaXCMJsf7fdzDc-fZqffvuPdBZ_-AY-rIlk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrQS8VJxtWg4jwQvIIrGdOHmoEJRWW9pdEGqlvpn4WKkSzbabRGh_HP-Nca4KQfetD4kUxTk8mfF8k7kAXiOCzVFPG6q1lVRYHlI9YzHVaKukqbAyyn3u8GSajE_Fl7P4bA1-97kwPqyyXxObhdrOjf9H_j6LeMQFT8WHyyvqm0Z552rfQSPvOivY3abCWJfXceSWv9CCK3cPP-PnfsPYwf7J3ph2TQaoEVJWNLWILx0aATqyyQzhTKx1bK3OcpEZaXIThpo5XOljjqyKpmduDRpFrlFshmuO970D64KLDG2_9U_702_fB4sPlaMYYigRyvdu1SZ3D3Wtj_pEa15mIZV_KcaRKWvzP9D7j8O20YMHD2CjA7DkY8txD2HNFY_g7qRz0T-Gva91hbh2QayrmjCvgpwXxFdFptYHy1dLUtaLWW4c6VrwXCzbstnnhvhoEpSHJ3B6K0R8CqNiXrgtIA7xThKlxoVG4inklzhOrBAzF0vJrQsg7MmkTFfG3HfT-KmuCzB7yiqkrPKUVTKAt8Mll20Nj9WDkfYK9Y1bmLxSvv72cOA3FkqGO1-4P4Cd_gupTvZLNXBqAK-Gsyi03hOTF25elypKfApvmIT4OHLDGB8SISSXfMUQlqRoLwt80mbLHsP8WJRkqeAsgHc9v1y_4Y2T3145n5dwb3wyOVbHh9OjHbiP0JG1P6Oewaha1O45wrNKv-iEgMCP25a7P0goR-E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRaq4oJZX01IwElxAVhPbiZNDVaGWVUtp4UClvZn4EakSZMsmEdqfxr9jnNcKQffWw660ipOsJzOebzKfZwBeI4LN0U8bqrWVVFgeUl2wmGqMVdJUWBnlfu_wxWVyeiU-zuLZBvwe9sJ4WuWwJrYLtZ0b_478IIt4xAVPxUHRsyK-nEyPbn5S30DKJ1qHbhqdhpy75S-M3qrDsxN81G8Ym374enxK-wYD1Agpa5paxJYOAwAd2aRAKBNrHVurs1xkRprchKFmDlf5mKOaYtiZW4MBkWudmuGa43XvwX3JeebZhHK2ivXQLYqRPYkgfkiotrv20Mt6vifG8TILqfzLJU5M1Zj_wd1_UrWtB5xuwcMeupL3na5tw4YrH8HmRZ-cfwzHn5saEe2CWFe3BK-SXJfE10Om1tPk6yWpmkWRG0f65js_ll3B7GtDPI8ELeEJXN2JCJ_CpJyXbgeIQ6STRKlxoZF4CDUljhMrROFiKbl1AYSDmJTpC5j7Phrf1ar0spesQskqL1klA3g7nnLTVe9YPxhlr9DTuIXJa-Urb48__IeFkuGXL9kfwN7whFRv9ZUadTSAV-NRNFefg8lLN28qFSV-826YhHg7cssYT4YQkku-ZghLUoyUBd7pWace4_xYlGSp4CyAd4O-rP7hrZPfXTufl7CJ1qY-nV2e78EDxIysewv1HCb1onH7iMtq_aK1AALf7trk_gA5-EV7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outlier+detection+in+high-density+surface+electromyographic+signals&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Marateb%2C+Hamid+R&rft.au=Rojas-Mart%C3%ADnez%2C+Monica&rft.au=Mansourian%2C+Marjan&rft.au=Merletti%2C+Roberto&rft.date=2012-01-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=50&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1007%2Fs11517-011-0790-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |