Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?

Under nutrient limiting conditions, cytoplasmic components are randomly sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for degradation and recycling. In the last few years, however, it has been observed that several cytoplasmic components such a...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 4; no. 6; pp. 838 - 840
Main Authors Kraft, Claudine, Peter, Matthias
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 16.08.2008
Subjects
Online AccessGet full text
ISSN1554-8627
1554-8635
1554-8635
DOI10.4161/auto.6603

Cover

More Information
Summary:Under nutrient limiting conditions, cytoplasmic components are randomly sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for degradation and recycling. In the last few years, however, it has been observed that several cytoplasmic components such as organelles, pathogens or specific protein complexes can also be selectively targeted for degradation by autophagy-related pathways (reviewed in reference 1). We have recently shown that in S. cerevisiae, mature ribosomes are subject to such selective degradation by autophagy under starvation conditions, in a process that we termed 'ribophagy'. 2 By genetic screening, we found that selective degradation of 60S large ribosomal subunits depends on the ubiquitin protease Ubp3 and its cofactor Bre5, implying that ribophagy is regulated by ubiquitin-dependent steps. Interestingly, several ubiquitinated proteins accumulate in ribosome fractions isolated from ubp3∆ cells, suggesting that the regulation of ribophagy by ubiquitin may be direct. Here we present data on a potential role of the ubiquitin ligase Rsp5 as a positive regulator of ribophagy, and discuss the possible involvement of ubiquitin as a signaling molecule in this process. Addendum to: Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1554-8627
1554-8635
1554-8635
DOI:10.4161/auto.6603