Alzheimer’s Disease-Related Metabolic Pattern in Diverse Forms of Neurodegenerative Diseases

Dementia is broadly characterized by cognitive and psychological dysfunction that significantly impairs daily functioning. Dementia has many causes including Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). Detection and differential diagnosis...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 11; no. 11; p. 2023
Main Authors Lau, Angus, Beheshti, Iman, Modirrousta, Mandana, Kolesar, Tiffany A., Goertzen, Andrew L., Ko, Ji Hyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics11112023

Cover

More Information
Summary:Dementia is broadly characterized by cognitive and psychological dysfunction that significantly impairs daily functioning. Dementia has many causes including Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). Detection and differential diagnosis in the early stages of dementia remains challenging. Fueled by AD Neuroimaging Initiatives (ADNI) (Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.), a number of neuroimaging biomarkers for AD have been proposed, yet it remains to be seen whether these markers are also sensitive to other types of dementia. We assessed AD-related metabolic patterns in 27 patients with diverse forms of dementia (five had probable/possible AD while others had atypical cases) and 20 non-demented individuals. All participants had positron emission tomography (PET) scans on file. We used a pre-trained machine learning-based AD designation (MAD) framework to investigate the AD-related metabolic pattern among the participants under study. The MAD algorithm showed a sensitivity of 0.67 and specificity of 0.90 for distinguishing dementia patients from non-dementia participants. A total of 18/27 dementia patients and 2/20 non-dementia patients were identified as having AD-like patterns of metabolism. These results highlight that many underlying causes of dementia have similar hypometabolic pattern as AD and this similarity is an interesting avenue for future research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors contributed equally to this manuscript.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics11112023