Skin Cancer Detection Using Kernel Fuzzy C-Means and Improved Neural Network Optimization Algorithm
Early diagnosis of malignant skin cancer from images is a significant part of the cancer treatment process. One of the principal purposes of this research is to propose a pipeline methodology for an optimum computer-aided diagnosis of skin cancers. The method contains four main stages. The first sta...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 9651957 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/9651957 |
Cover
| Summary: | Early diagnosis of malignant skin cancer from images is a significant part of the cancer treatment process. One of the principal purposes of this research is to propose a pipeline methodology for an optimum computer-aided diagnosis of skin cancers. The method contains four main stages. The first stage is to perform a preprocessing based on noise reduction and contrast enhancement. The second stage is to segment the region of interest (ROI). This study uses kernel fuzzy C-means for ROI segmentation. Then, some features from the ROI are extracted, and then, a feature selection is used for selecting the best ones. The selected features are then injected into a support vector machine (SVM) for final identification. One important part of the contribution in this study is to propose a developed version of a new metaheuristic, named neural network optimization algorithm, to optimize both parts of feature selection and SVM classifier. Comparison results of the method with 5 state-of-the-art methods showed the approach’s higher superiority toward the others. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: V. Rajinikanth |
| ISSN: | 1687-5265 1687-5273 1687-5273 |
| DOI: | 10.1155/2021/9651957 |