Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorp...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 23; pp. e1907035 - n/a
Main Authors Kankala, Ranjith Kumar, Han, Ya‐Hui, Na, Jongbeom, Lee, Chia‐Hung, Sun, Ziqi, Wang, Shi‐Bin, Kimura, Tatsuo, Ok, Yong Sik, Yamauchi, Yusuke, Chen, Ai‐Zheng, Wu, Kevin C.‐W.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201907035

Cover

Abstract Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation. Mesoporous silica nanoparticles (MSNs) have garnered enormous interest owing to their highly advantageous physicochemical and morphological attributes. Collectively, progression has been made by modifying the surface of the siliceous frameworks through incorporating diverse supramolecular assemblies. An overview of the fabrication of MSNs and discussions on significant advances in engineering of MSNs, along with their scope toward clinical translation, is provided.
AbstractList Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation. Mesoporous silica nanoparticles (MSNs) have garnered enormous interest owing to their highly advantageous physicochemical and morphological attributes. Collectively, progression has been made by modifying the surface of the siliceous frameworks through incorporating diverse supramolecular assemblies. An overview of the fabrication of MSNs and discussions on significant advances in engineering of MSNs, along with their scope toward clinical translation, is provided.
Author Lee, Chia‐Hung
Chen, Ai‐Zheng
Wu, Kevin C.‐W.
Ok, Yong Sik
Na, Jongbeom
Kankala, Ranjith Kumar
Wang, Shi‐Bin
Kimura, Tatsuo
Han, Ya‐Hui
Sun, Ziqi
Yamauchi, Yusuke
Author_xml – sequence: 1
  givenname: Ranjith Kumar
  surname: Kankala
  fullname: Kankala, Ranjith Kumar
  organization: Huaqiao University
– sequence: 2
  givenname: Ya‐Hui
  surname: Han
  fullname: Han, Ya‐Hui
  organization: Huaqiao University
– sequence: 3
  givenname: Jongbeom
  surname: Na
  fullname: Na, Jongbeom
  organization: National Institute for Materials Science (NIMS)
– sequence: 4
  givenname: Chia‐Hung
  surname: Lee
  fullname: Lee, Chia‐Hung
  organization: National Dong Hwa University
– sequence: 5
  givenname: Ziqi
  surname: Sun
  fullname: Sun, Ziqi
  organization: Queensland University of Technology
– sequence: 6
  givenname: Shi‐Bin
  surname: Wang
  fullname: Wang, Shi‐Bin
  organization: Huaqiao University
– sequence: 7
  givenname: Tatsuo
  surname: Kimura
  fullname: Kimura, Tatsuo
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 8
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  organization: Korea University
– sequence: 9
  givenname: Yusuke
  orcidid: 0000-0001-7854-927X
  surname: Yamauchi
  fullname: Yamauchi, Yusuke
  email: y.yamauchi@uq.edu.au
  organization: National Institute for Materials Science (NIMS)
– sequence: 10
  givenname: Ai‐Zheng
  surname: Chen
  fullname: Chen, Ai‐Zheng
  email: azchen@hqu.edu.cn
  organization: Huaqiao University
– sequence: 11
  givenname: Kevin C.‐W.
  surname: Wu
  fullname: Wu, Kevin C.‐W.
  email: kevinwu@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32319133$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtvFDEURi0URDaBlhKNREMzi6-f43IJTymPIlBRjLz2HeFodrzYHkX77_FmQ5AioVS2pXOu7e87IUdTnJCQ10CXQCl7b_3GLhkFQzXl8hlZgGTQCmrkEVlQw2VrlOiOyUnON5RSo6h6QY4542CA8wX5eWmnaJP7FQq6Mif0zXVJ8922sVM9zWmwDpsPIQ7z5EqIkx1D2TVxaC4wx21Mcc7NdRiDs81-2tamEtyI-SV5Ptgx46v79ZT8-Pzp-9nX9vzqy7ez1XnrhFayBYMglEYGFsF5R9maDdytjdXSd1pQRKuYFEYp6Z3zynReDOvOaxik0B0_Je8Oc7cp_p4xl34TssNxtBPWt_WM1xy0AKYr-vYRehPnVH9UKQFAFWcAlXpzT83rDfp-m8LGpl3_N7YKLA-ASzHnhMMDArTf99Lve-kfeqmCeCS4UOw-zJJsGP-vmYN2G0bcPXFJv_p4sfrn_gFdsKJM
CitedBy_id crossref_primary_10_1007_s13399_023_04636_5
crossref_primary_10_1016_j_cej_2023_144972
crossref_primary_10_1016_j_fuel_2024_131162
crossref_primary_10_1016_j_ecoenv_2023_115422
crossref_primary_10_1007_s11356_021_16414_9
crossref_primary_10_1088_1361_6528_ace4d3
crossref_primary_10_1080_14686996_2021_1955603
crossref_primary_10_1186_s12951_024_02680_5
crossref_primary_10_1016_j_ijbiomac_2025_141913
crossref_primary_10_1002_advs_202004586
crossref_primary_10_1002_cssc_202300477
crossref_primary_10_1016_j_jddst_2024_105768
crossref_primary_10_1016_j_mtcomm_2025_111635
crossref_primary_10_1016_j_seppur_2022_121517
crossref_primary_10_1016_j_jbiotec_2023_08_002
crossref_primary_10_3389_fnut_2022_1077893
crossref_primary_10_1016_j_biomaterials_2024_122968
crossref_primary_10_1007_s10953_024_01375_7
crossref_primary_10_1021_acsnano_1c03456
crossref_primary_10_1088_2053_1591_abbf7e
crossref_primary_10_1039_D4RA03074E
crossref_primary_10_1021_acs_langmuir_4c03157
crossref_primary_10_1002_aoc_7483
crossref_primary_10_1016_j_ceramint_2023_09_081
crossref_primary_10_1021_acs_jpcc_4c05815
crossref_primary_10_1021_acsnano_2c12817
crossref_primary_10_12677_jcpm_2024_32079
crossref_primary_10_1039_D2RA06668H
crossref_primary_10_1016_j_msec_2021_112274
crossref_primary_10_3390_pr10122595
crossref_primary_10_1016_j_bioorg_2024_107505
crossref_primary_10_3390_nano10061116
crossref_primary_10_1021_accountsmr_0c00028
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1039_D3RA07231B
crossref_primary_10_1088_1361_6528_ac467a
crossref_primary_10_1016_j_cis_2024_103087
crossref_primary_10_1021_acsami_1c07127
crossref_primary_10_1021_acsanm_4c02641
crossref_primary_10_1021_acsami_3c02052
crossref_primary_10_1021_acsnano_5c01877
crossref_primary_10_1021_jacs_1c04836
crossref_primary_10_1080_00032719_2022_2083144
crossref_primary_10_1039_D3CS00124E
crossref_primary_10_1208_s12249_024_02734_9
crossref_primary_10_1002_ange_202215078
crossref_primary_10_1002_smll_202104449
crossref_primary_10_1016_j_cej_2024_154914
crossref_primary_10_1016_j_bioadv_2022_212821
crossref_primary_10_1063_5_0029060
crossref_primary_10_1016_j_jare_2023_01_019
crossref_primary_10_1016_j_bioactmat_2024_05_037
crossref_primary_10_3390_pharmaceutics15020560
crossref_primary_10_3390_biomedicines9010073
crossref_primary_10_1177_08853282231200711
crossref_primary_10_1016_j_ijbiomac_2024_138311
crossref_primary_10_1155_2022_2131583
crossref_primary_10_1039_D1NR04048K
crossref_primary_10_1039_D3TB00364G
crossref_primary_10_1016_j_cobme_2021_100294
crossref_primary_10_3389_fbioe_2022_1095837
crossref_primary_10_1002_slct_202400450
crossref_primary_10_1002_adma_202107212
crossref_primary_10_1021_acs_analchem_4c06166
crossref_primary_10_1016_j_actbio_2022_10_019
crossref_primary_10_1016_j_ijpharm_2020_119921
crossref_primary_10_1016_j_aac_2024_02_001
crossref_primary_10_1186_s12951_023_02093_w
crossref_primary_10_1007_s40544_022_0648_z
crossref_primary_10_1021_acsnano_4c16280
crossref_primary_10_1016_j_ijbiomac_2020_08_211
crossref_primary_10_1002_adma_202100820
crossref_primary_10_1016_j_ijpharm_2024_124314
crossref_primary_10_1039_D0TA06987F
crossref_primary_10_1038_s41427_023_00500_0
crossref_primary_10_3389_fbioe_2024_1343329
crossref_primary_10_1002_smll_202102887
crossref_primary_10_1080_24701556_2023_2267522
crossref_primary_10_1016_j_ceramint_2020_10_022
crossref_primary_10_1016_j_cej_2024_157272
crossref_primary_10_22159_ijap_2024v16i6_50767
crossref_primary_10_3389_fchem_2022_872069
crossref_primary_10_1021_acs_langmuir_1c01151
crossref_primary_10_1016_j_bioactmat_2022_11_018
crossref_primary_10_1002_cmdc_202300374
crossref_primary_10_1016_j_carbon_2023_01_063
crossref_primary_10_3389_fnano_2022_999923
crossref_primary_10_1002_nano_202200216
crossref_primary_10_1016_j_matdes_2023_111794
crossref_primary_10_1016_j_fuel_2025_134840
crossref_primary_10_2147_IJN_S387428
crossref_primary_10_1016_j_jtice_2020_10_023
crossref_primary_10_1039_D0CC06333A
crossref_primary_10_1016_j_toxrep_2023_05_006
crossref_primary_10_1016_j_ccr_2023_215051
crossref_primary_10_1021_acsabm_3c00256
crossref_primary_10_1007_s00210_025_04038_6
crossref_primary_10_3390_pharmaceutics15020658
crossref_primary_10_1016_j_addr_2022_114270
crossref_primary_10_1016_j_cclet_2024_110221
crossref_primary_10_1016_j_colsurfb_2023_113715
crossref_primary_10_1016_j_mtcomm_2025_111745
crossref_primary_10_3390_nano12152520
crossref_primary_10_1016_j_jcis_2022_05_099
crossref_primary_10_1039_D0BM01904F
crossref_primary_10_1002_adfm_202208513
crossref_primary_10_1016_j_indcrop_2022_115387
crossref_primary_10_3390_polym15102317
crossref_primary_10_1016_j_ejpb_2021_04_020
crossref_primary_10_1002_agt2_39
crossref_primary_10_1039_D0NR05132B
crossref_primary_10_1021_acs_nanolett_2c04229
crossref_primary_10_3390_pharmaceutics14061265
crossref_primary_10_1002_chem_202400851
crossref_primary_10_1016_j_msec_2021_111918
crossref_primary_10_2109_jcersj2_22078
crossref_primary_10_1016_j_nantod_2021_101146
crossref_primary_10_1016_j_sajce_2024_08_013
crossref_primary_10_1021_acs_biomac_1c01343
crossref_primary_10_1016_j_jddst_2022_103983
crossref_primary_10_1002_mco2_187
crossref_primary_10_2147_IJN_S383324
crossref_primary_10_1016_j_jcis_2021_12_126
crossref_primary_10_1016_j_jcis_2021_02_069
crossref_primary_10_1016_S1872_2067_24_60070_7
crossref_primary_10_1038_s41427_023_00469_w
crossref_primary_10_1016_j_cej_2022_134820
crossref_primary_10_3390_ma17153877
crossref_primary_10_1016_j_jenvman_2023_118629
crossref_primary_10_3390_polym15102339
crossref_primary_10_1016_j_colsurfb_2020_111405
crossref_primary_10_1039_D3MA00021D
crossref_primary_10_1016_j_jssc_2022_123639
crossref_primary_10_1039_D1NR07513F
crossref_primary_10_1021_acsanm_4c07241
crossref_primary_10_1016_j_rechem_2023_100769
crossref_primary_10_1007_s00289_023_04934_y
crossref_primary_10_1016_j_cej_2025_161336
crossref_primary_10_1016_j_jconrel_2024_01_005
crossref_primary_10_1002_fsn3_3933
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1016_j_colsurfa_2022_128414
crossref_primary_10_3390_nano12213767
crossref_primary_10_1016_j_jpha_2024_101095
crossref_primary_10_1021_acsmaterialslett_4c01142
crossref_primary_10_2139_ssrn_4134160
crossref_primary_10_1021_acsnano_4c07119
crossref_primary_10_1038_s41596_022_00784_6
crossref_primary_10_1021_acs_molpharmaceut_3c01095
crossref_primary_10_1021_acsanm_2c01612
crossref_primary_10_1016_j_seppur_2024_127301
crossref_primary_10_1021_acsomega_4c01607
crossref_primary_10_1016_j_jconrel_2022_05_019
crossref_primary_10_1002_adhm_202200665
crossref_primary_10_1007_s40820_020_00533_y
crossref_primary_10_1016_j_carbpol_2021_118822
crossref_primary_10_1016_j_cej_2023_142353
crossref_primary_10_1186_s12951_021_01139_1
crossref_primary_10_1088_1361_6528_ad42a3
crossref_primary_10_1016_j_jddst_2020_102170
crossref_primary_10_1016_j_ijpharm_2022_122529
crossref_primary_10_1007_s11095_020_02917_6
crossref_primary_10_1016_j_micromeso_2022_112418
crossref_primary_10_1246_bcsj_20200362
crossref_primary_10_3390_nano12111940
crossref_primary_10_1007_s12668_024_01301_7
crossref_primary_10_1016_j_mtchem_2022_101059
crossref_primary_10_1016_j_ijpx_2022_100116
crossref_primary_10_1088_2631_6331_adb004
crossref_primary_10_1016_j_ijbiomac_2022_12_266
crossref_primary_10_1002_sia_6883
crossref_primary_10_1016_j_ccr_2022_214765
crossref_primary_10_1002_nano_202300131
crossref_primary_10_1007_s12633_023_02662_6
crossref_primary_10_1002_slct_202400859
crossref_primary_10_3390_pharmaceutics13101615
crossref_primary_10_1016_j_actbio_2021_05_007
crossref_primary_10_1016_j_nantod_2021_101231
crossref_primary_10_1016_j_biotechadv_2023_108277
crossref_primary_10_1016_j_fpc_2024_03_001
crossref_primary_10_1021_acsami_4c03227
crossref_primary_10_1007_s10853_023_09193_w
crossref_primary_10_1016_j_bioactmat_2024_01_001
crossref_primary_10_1038_s41467_025_56100_9
crossref_primary_10_1021_acs_langmuir_4c01863
crossref_primary_10_1007_s10965_021_02825_2
crossref_primary_10_1016_j_ccr_2021_214309
crossref_primary_10_1016_j_ccr_2024_216052
crossref_primary_10_1039_D2CC04680F
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1002_advs_202407609
crossref_primary_10_1002_adtp_202300062
crossref_primary_10_3390_molecules26154636
crossref_primary_10_3390_c7040073
crossref_primary_10_1016_j_nano_2021_102494
crossref_primary_10_1039_D3TB01175E
crossref_primary_10_1038_s41392_023_01481_w
crossref_primary_10_1002_slct_202200574
crossref_primary_10_1002_adtp_202000218
crossref_primary_10_3390_molecules25204722
crossref_primary_10_1016_j_bioactmat_2022_07_023
crossref_primary_10_1016_j_ejps_2023_106372
crossref_primary_10_1007_s12274_021_4055_y
crossref_primary_10_1088_2053_1591_acc82d
crossref_primary_10_2147_IJN_S334785
crossref_primary_10_3390_nano12203693
crossref_primary_10_33102_mjosht_v10i1_402
crossref_primary_10_3389_fonc_2021_789330
crossref_primary_10_1021_jacs_0c10098
crossref_primary_10_1016_j_ejps_2024_106719
crossref_primary_10_1021_jacs_2c12214
crossref_primary_10_1016_j_envres_2023_117264
crossref_primary_10_1002_anie_202319567
crossref_primary_10_3390_coatings12081161
crossref_primary_10_1002_VIW_20200117
crossref_primary_10_3389_fchem_2022_952675
crossref_primary_10_1007_s42250_023_00688_2
crossref_primary_10_1016_j_actbio_2021_03_024
crossref_primary_10_1021_acs_chemrev_1c00236
crossref_primary_10_1016_j_jconrel_2021_09_005
crossref_primary_10_1021_acsabm_1c00710
crossref_primary_10_1016_j_eurpolymj_2024_112870
crossref_primary_10_1039_D3NJ04040B
crossref_primary_10_1016_j_fochx_2024_101953
crossref_primary_10_2217_nnm_2019_0440
crossref_primary_10_1021_acsmaterialsau_1c00071
crossref_primary_10_1021_acsami_1c05962
crossref_primary_10_1021_acs_chemmater_1c00192
crossref_primary_10_1007_s40005_023_00632_z
crossref_primary_10_3103_S1061386224700079
crossref_primary_10_1002_adfm_202417584
crossref_primary_10_1002_adhm_202303582
crossref_primary_10_3390_pharmaceutics15010020
crossref_primary_10_1016_j_jma_2022_05_003
crossref_primary_10_1002_smll_202408898
crossref_primary_10_1002_slct_202204968
crossref_primary_10_1016_j_micromeso_2022_111943
crossref_primary_10_1002_anie_202206870
crossref_primary_10_1007_s11426_023_1606_8
crossref_primary_10_1039_D2SM00939K
crossref_primary_10_1002_smtd_202201195
crossref_primary_10_1016_j_ejps_2022_106261
crossref_primary_10_1016_j_jchromb_2023_123961
crossref_primary_10_2147_IJN_S290537
crossref_primary_10_1016_j_colsurfb_2023_113346
crossref_primary_10_1208_s12249_022_02464_w
crossref_primary_10_1007_s43994_024_00165_7
crossref_primary_10_1016_j_cej_2023_144154
crossref_primary_10_3390_ijms231911604
crossref_primary_10_1021_acsami_2c10506
crossref_primary_10_1016_j_inoche_2024_112483
crossref_primary_10_1021_acs_accounts_4c00502
crossref_primary_10_1186_s12951_022_01315_x
crossref_primary_10_1021_acsbiomaterials_0c00830
crossref_primary_10_1002_elps_202200184
crossref_primary_10_1038_s41467_023_40017_2
crossref_primary_10_3390_jfb14090483
crossref_primary_10_1016_j_ijbiomac_2025_141581
crossref_primary_10_1039_D1CP05458A
crossref_primary_10_3390_molecules27031133
crossref_primary_10_1016_j_bios_2022_114664
crossref_primary_10_1038_s41427_024_00560_w
crossref_primary_10_1016_j_carpta_2024_100634
crossref_primary_10_1021_acsami_2c13076
crossref_primary_10_1016_j_addr_2022_114502
crossref_primary_10_1063_5_0231279
crossref_primary_10_1021_acsanm_1c00005
crossref_primary_10_1039_D2RA01587K
crossref_primary_10_1246_bcsj_20230167
crossref_primary_10_1002_adhm_202201884
crossref_primary_10_1021_acsabm_1c00753
crossref_primary_10_1016_j_actbio_2020_09_009
crossref_primary_10_1021_acsbiomaterials_3c01749
crossref_primary_10_1002_adsu_202300395
crossref_primary_10_1016_j_nwnano_2023_100005
crossref_primary_10_1016_j_chempr_2021_01_001
crossref_primary_10_1021_jacs_1c11749
crossref_primary_10_1126_sciadv_adi7502
crossref_primary_10_1016_j_jcis_2022_10_157
crossref_primary_10_1039_D2CE00872F
crossref_primary_10_1016_j_ijbiomac_2024_129391
crossref_primary_10_1186_s12951_023_02165_x
crossref_primary_10_1002_adtp_202100172
crossref_primary_10_3390_bios14070326
crossref_primary_10_1021_acsami_1c11138
crossref_primary_10_1080_1061186X_2020_1812614
crossref_primary_10_1016_j_porgcoat_2023_107441
crossref_primary_10_1021_acsmaterialslett_3c01615
crossref_primary_10_1021_acsabm_4c00019
crossref_primary_10_1016_j_ejpb_2024_114503
crossref_primary_10_1002_bab_2672
crossref_primary_10_1016_j_colsurfb_2023_113387
crossref_primary_10_3390_bioengineering10060637
crossref_primary_10_1002_cjce_24921
crossref_primary_10_1016_j_jddst_2023_104970
crossref_primary_10_1016_j_phrs_2024_107308
crossref_primary_10_1016_j_bioactmat_2023_01_003
crossref_primary_10_1021_acs_molpharmaceut_2c00374
crossref_primary_10_2147_IJN_S451919
crossref_primary_10_1039_D3MA00066D
crossref_primary_10_1016_j_brainres_2022_147786
crossref_primary_10_1038_s41392_023_01654_7
crossref_primary_10_1016_j_cej_2022_138042
crossref_primary_10_1002_adhm_202400888
crossref_primary_10_1016_j_heliyon_2024_e29458
crossref_primary_10_1002_pat_5348
crossref_primary_10_1039_D1AN01077H
crossref_primary_10_1016_j_biomaterials_2021_121028
crossref_primary_10_1002_adfm_202204714
crossref_primary_10_2174_1871530323666230315145332
crossref_primary_10_1016_j_trac_2024_117846
crossref_primary_10_1038_s41545_025_00435_9
crossref_primary_10_1016_j_ejps_2023_106652
crossref_primary_10_1002_slct_202402022
crossref_primary_10_1007_s12274_022_4191_z
crossref_primary_10_1021_acs_chemrev_2c00050
crossref_primary_10_1016_j_colsurfb_2024_114460
crossref_primary_10_1002_cbic_202200713
crossref_primary_10_1088_1361_6528_ac6bb0
crossref_primary_10_2147_IJN_S293190
crossref_primary_10_1080_10717544_2022_2075985
crossref_primary_10_1016_j_matlet_2022_133516
crossref_primary_10_1002_anie_202215078
crossref_primary_10_1021_acsaenm_3c00626
crossref_primary_10_2147_IJN_S458086
crossref_primary_10_1002_adma_202004654
crossref_primary_10_1016_j_jpcs_2022_111190
crossref_primary_10_1016_j_aca_2024_343420
crossref_primary_10_1016_j_jconrel_2022_10_028
crossref_primary_10_3390_molecules28020594
crossref_primary_10_1016_j_ensm_2023_102768
crossref_primary_10_1016_j_trac_2024_117945
crossref_primary_10_3390_pharmaceutics15102434
crossref_primary_10_1038_s41467_023_36832_2
crossref_primary_10_1016_j_jddst_2023_104305
crossref_primary_10_1021_acs_inorgchem_4c00626
crossref_primary_10_1016_j_apsb_2023_08_021
crossref_primary_10_1016_j_electacta_2021_138195
crossref_primary_10_1016_j_biopha_2023_114643
crossref_primary_10_3389_fbioe_2022_845821
crossref_primary_10_1002_smll_202006925
crossref_primary_10_1016_j_carbpol_2021_118277
crossref_primary_10_31436_jop_v4i2_264
crossref_primary_10_1002_advs_202306884
crossref_primary_10_1016_j_micromeso_2020_110774
crossref_primary_10_1016_j_jma_2025_01_027
crossref_primary_10_1007_s11426_020_9869_4
crossref_primary_10_1021_acssuschemeng_3c00856
crossref_primary_10_1007_s13346_024_01609_7
crossref_primary_10_1016_j_isci_2020_101687
crossref_primary_10_1002_smll_202106581
crossref_primary_10_1002_smll_202106580
crossref_primary_10_1007_s11706_020_0526_4
crossref_primary_10_1021_acs_langmuir_0c02298
crossref_primary_10_1039_D2QM00133K
crossref_primary_10_1016_j_pmatsci_2024_101314
crossref_primary_10_1021_acsbiomaterials_0c01644
crossref_primary_10_1016_j_ijpharm_2024_124775
crossref_primary_10_1016_j_micromeso_2021_110967
crossref_primary_10_1016_j_jclepro_2022_135157
crossref_primary_10_1016_j_eng_2021_12_021
crossref_primary_10_1002_adhm_202002138
crossref_primary_10_1080_02726351_2021_1923591
crossref_primary_10_3390_molecules27041218
crossref_primary_10_2147_IJN_S413496
crossref_primary_10_1039_D1NA00059D
crossref_primary_10_1080_01932691_2024_2348512
crossref_primary_10_1002_ange_202206870
crossref_primary_10_1016_j_cej_2021_129415
crossref_primary_10_1002_smll_202401631
crossref_primary_10_1093_rb_rbae128
crossref_primary_10_1016_j_cjche_2022_04_025
crossref_primary_10_2217_nnm_2022_0023
crossref_primary_10_1016_j_molliq_2020_114798
crossref_primary_10_1039_D1TB00481F
crossref_primary_10_2217_nnm_2022_0026
crossref_primary_10_1021_acs_molpharmaceut_4c00896
crossref_primary_10_1016_j_bioactmat_2022_03_032
crossref_primary_10_1016_j_jddst_2024_105723
crossref_primary_10_1016_j_micromeso_2020_110593
crossref_primary_10_1007_s10934_024_01634_4
crossref_primary_10_1016_j_colsurfb_2025_114534
crossref_primary_10_3390_agronomy15030737
crossref_primary_10_1021_acs_molpharmaceut_2c00755
crossref_primary_10_1038_s41427_021_00320_0
crossref_primary_10_1002_smll_202409112
crossref_primary_10_1016_j_cej_2022_140868
crossref_primary_10_1016_j_ijpharm_2022_122099
crossref_primary_10_3390_nano11051293
crossref_primary_10_1016_j_ceramint_2021_08_129
crossref_primary_10_1093_rb_rbac080
crossref_primary_10_1039_D0CE01031F
crossref_primary_10_3390_pharmaceutics15102483
crossref_primary_10_1016_j_mtchem_2021_100660
crossref_primary_10_3390_ijms22031256
crossref_primary_10_3390_mi15020282
crossref_primary_10_1002_admi_202102558
crossref_primary_10_1007_s10965_021_02851_0
crossref_primary_10_1186_s12943_022_01708_4
crossref_primary_10_3390_inorganics13010012
crossref_primary_10_1016_j_mtcomm_2023_107862
crossref_primary_10_1186_s12951_024_02627_w
crossref_primary_10_1002_adhm_202400240
crossref_primary_10_1016_j_jhazmat_2021_126404
crossref_primary_10_1021_acsomega_2c04144
crossref_primary_10_1016_j_jcis_2021_03_001
crossref_primary_10_1016_j_actbio_2021_09_008
crossref_primary_10_1016_j_fmre_2023_08_012
crossref_primary_10_3390_nano12162848
crossref_primary_10_1016_j_addr_2021_113846
crossref_primary_10_1002_ange_202319567
crossref_primary_10_3390_pharmaceutics13020152
crossref_primary_10_1039_D0TA11770F
crossref_primary_10_1016_j_eng_2024_01_030
crossref_primary_10_1016_j_bioadv_2024_213872
crossref_primary_10_1039_D1SE00817J
crossref_primary_10_1002_adhm_202202245
crossref_primary_10_1021_acsabm_2c01084
Cites_doi 10.1039/C5NR06246B
10.1021/jacs.5b02700
10.1021/acsnano.5b04378
10.1021/acsami.7b18577
10.1039/C4CY00996G
10.1039/C7NR07875G
10.1246/bcsj.63.988
10.1002/adfm.201902652
10.1016/j.micromeso.2016.11.002
10.1021/acsami.5b05893
10.1021/nn200365a
10.1002/cbic.200700509
10.1002/adfm.201302988
10.1016/j.nantod.2009.02.001
10.1016/j.jconrel.2016.03.030
10.1002/advs.201901690
10.1021/ja810011p
10.1039/c0cc01786h
10.1021/acsami.5b00368
10.1002/smll.201000538
10.1002/smll.200900005
10.1038/359710a0
10.1021/cm5040276
10.1039/c1cc16004d
10.1002/adma.201801198
10.1038/s41467-018-06730-z
10.1021/cm402592t
10.1002/adma.201404226
10.1002/celc.201500244
10.1016/j.cej.2019.123138
10.1016/j.jconrel.2016.11.032
10.1039/C5TB00634A
10.1126/science.1231391
10.1021/ja9916658
10.1016/j.jcis.2011.03.004
10.1002/anie.201505538
10.1021/tx300166u
10.1016/j.biomaterials.2016.05.030
10.1039/C8CC09389J
10.1021/acsami.5b11310
10.3390/nano7070162
10.1002/adma.200400349
10.1016/j.cej.2019.03.272
10.1002/smll.201501449
10.1002/anie.200503253
10.1039/c3cc45967e
10.1039/C3TB21268H
10.1016/j.addr.2015.09.009
10.1021/acsami.6b13876
10.1021/ar3000986
10.1016/j.biomaterials.2016.03.019
10.1039/c2cc30411b
10.1039/c1cs15246g
10.1039/c1cc11760b
10.1039/c1nr10224a
10.1016/j.micromeso.2011.07.014
10.1021/nn200809t
10.1039/C5RA16023E
10.1021/acsami.6b11324
10.1021/ja1070653
10.1002/chem.201403393
10.1016/j.addr.2008.03.012
10.1021/ja110094g
10.1080/10717544.2018.1425779
10.2147/IJN.S148438
10.1039/C6TB03066A
10.1016/j.biomaterials.2015.04.053
10.1002/adma.201401931
10.1021/ar2000259
10.1021/nl0727415
10.1002/anie.201300958
10.1021/nn800072t
10.1039/C2CS35297D
10.1021/cm3001688
10.2217/nnm.15.212
10.1002/anie.200460892
10.2147/IJN.S120611
10.1039/C5NR08560H
10.1002/adhm.201700720
10.1016/j.biomaterials.2015.08.021
10.1021/ja067379v
10.1039/C7CS00219J
10.1016/j.micromeso.2009.11.015
10.1021/ja910846q
10.1021/nn2033105
10.1002/anie.201806759
10.1038/srep06064
10.1002/adma.201505524
10.1021/ja907838s
10.1016/j.biomaterials.2008.07.007
10.1021/jacs.7b01118
10.1039/C5NR05649G
10.1016/j.cej.2013.06.032
10.1039/C4CC10064F
10.1021/ja206998x
10.1002/adma.201205292
10.1021/ja508733r
10.1021/ja201779d
10.1021/jacs.7b10694
10.1021/acs.chemmater.8b01873
10.1002/adma.201401124
10.1039/C5NR01050K
10.1021/ja0719780
10.1016/j.biomaterials.2011.10.017
10.1002/adma.201400815
10.1016/j.biomaterials.2014.01.013
10.1021/acsbiomaterials.7b00569
10.1002/adfm.201404629
10.1038/47229
10.1021/jacs.6b00902
10.1021/acsami.7b06906
10.1002/adfm.201402755
10.1021/nl0714785
10.1039/C5CS00243E
10.1016/j.biomaterials.2012.10.072
10.1039/c3cs35405a
10.1039/C5TB00304K
10.1002/anie.201712996
10.1016/S1387-1811(01)00404-8
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201907035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32319133
10_1002_adma_201907035
ADMA201907035
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31800794; U1605225; 81971734
– fundername: Australian Research Council
  funderid: FT150100479
– fundername: Fundamental Research Funds for the Central Universities
  funderid: ZQN‐713
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 109L891104
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: G20190013023
– fundername: Ministry of Science and ICT
  funderid: NRF‐2019M3E6A1064197
– fundername: Program for Innovative Research Team in Science and Technology in Fujian Province Universities
– fundername: National Research Foundation of Korea
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2019J01076
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2019J01076
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 109L891104
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZQN-713
– fundername: National Natural Science Foundation of China
  grantid: 81971734
– fundername: National Natural Science Foundation of China
  grantid: 31800794
– fundername: National Natural Science Foundation of China
  grantid: U1605225
– fundername: Australian Research Council
  grantid: FT150100479
– fundername: Ministry of Science and ICT
  grantid: NRF-2019M3E6A1064197
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4765-19e1467e21ae1cdc02b2f3cb9a75d8740eea62549665dccd698d4fb8d71f54783
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 00:03:26 EDT 2025
Fri Jul 25 03:15:35 EDT 2025
Mon Jul 21 06:02:41 EDT 2025
Wed Oct 01 03:13:44 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:35:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords mesoporous silica nanoparticles
nanomaterials
metal shielding
surface modification
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-19e1467e21ae1cdc02b2f3cb9a75d8740eea62549665dccd698d4fb8d71f54783
Notes This article is dedicated to Dr. Victor S.‐Y. Lin, who was a professor of chemistry at Iowa State University from 1999 until he unexpectedly passed away in 2010. Victor was a pioneer in the synthesis and applications of mesoporous silica nanoparticles (MSNs), a term he created to describe nanometer‐sized mesoporous silica materials with well‐defined and controllable properties in the biomedical and catalytic applications.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7854-927X
PMID 32319133
PQID 2411063211
PQPubID 2045203
PageCount 27
ParticipantIDs proquest_miscellaneous_2393574127
proquest_journals_2411063211
pubmed_primary_32319133
crossref_primary_10_1002_adma_201907035
crossref_citationtrail_10_1002_adma_201907035
wiley_primary_10_1002_adma_201907035_ADMA201907035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 358
2017; 6
2017; 7
2013; 25
2017; 3
2019; 55
2016; 229
2017; 46
2008; 9
2014; 26
1999; 121
2016; 100
2008; 8
2014; 24
2001; 49
2008; 2
1999; 402
2017; 9
2014; 136
2018; 9
2014; 2
2015; 137
2008; 29
2015; 44
2013; 52
1992; 359
2019; 29
2007; 7
2018; 30
2017; 240
2012; 25
2012; 24
2008; 60
2010; 6
2015; 2
2014; 238
2007; 129
2015; 5
2019; 6
2015; 4
2018; 140
2013; 49
2015; 3
2020; 383
2015; 95
2013; 46
2015; 51
2013; 42
2015; 11
2015; 54
2009; 131
2016; 91
2013; 340
2011; 3
2015; 9
2012; 148
2011; 5
2015; 7
2012; 33
2005; 44
2011; 133
2017; 259
2017; 139
2018; 25
2016; 11
1990; 63
2015; 25
2015; 69
2015; 27
2010; 46
2006; 45
2015; 60
2004; 16
2013; 34
2017; 12
2015; 21
2010; 132
2011; 44
2014; 35
2016; 138
2009; 5
2009; 4
2011; 47
2012; 48
2016; 28
2018; 10
2019; 370
2016; 8
2012; 41
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 5949
  year: 2015
  publication-title: Small
– volume: 4
  start-page: 6064
  year: 2015
  publication-title: Sci. Rep.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 5746
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 370
  start-page: 1188
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 29
  start-page: 4045
  year: 2008
  publication-title: Biomaterials
– volume: 25
  start-page: 293
  year: 2018
  publication-title: Drug Delivery
– volume: 2
  start-page: 428
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 402
  start-page: 867
  year: 1999
  publication-title: Nature
– volume: 44
  start-page: 893
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 6480
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 7214
  year: 2014
  publication-title: Chem. Mater.
– volume: 26
  start-page: 4947
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 165
  year: 2009
  publication-title: Nano Today
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 44
  start-page: 3474
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 6024
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 1735
  year: 2015
  publication-title: ChemElectroChem
– volume: 132
  start-page: 1500
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 405
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 95
  start-page: 40
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 52
  start-page: 5580
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 1462
  year: 2012
  publication-title: Chem. Mater.
– volume: 24
  start-page: 2450
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 3650
  year: 2014
  publication-title: Biomaterials
– volume: 69
  start-page: 212
  year: 2015
  publication-title: Biomaterials
– volume: 33
  start-page: 989
  year: 2012
  publication-title: Biomaterials
– volume: 91
  start-page: 90
  year: 2016
  publication-title: Biomaterials
– volume: 340
  start-page: 337
  year: 2013
  publication-title: Science
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 229
  start-page: 183
  year: 2016
  publication-title: J. Controlled Release
– volume: 47
  year: 2011
  publication-title: Chem. Commun.
– volume: 9
  start-page: 53
  year: 2008
  publication-title: ChemBioChem
– volume: 47
  start-page: 9972
  year: 2011
  publication-title: Chem. Commun.
– volume: 45
  start-page: 2434
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 5340
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 2123
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 3454
  year: 2012
  publication-title: Chem. Commun.
– volume: 238
  start-page: 198
  year: 2014
  publication-title: Chem. Eng. J.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1385
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 3740
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 100
  start-page: 118
  year: 2016
  publication-title: Biomaterials
– volume: 25
  start-page: 2265
  year: 2012
  publication-title: Chem. Res. Toxicol.
– volume: 6
  start-page: 1794
  year: 2010
  publication-title: Small
– volume: 21
  start-page: 331
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 139
  start-page: 3978
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 1278
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 1391
  year: 2013
  publication-title: Biomaterials
– volume: 7
  start-page: 8003
  year: 2015
  publication-title: Nanoscale
– volume: 42
  start-page: 3862
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 359
  start-page: 710
  year: 1992
  publication-title: Nature
– volume: 358
  start-page: 354
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 60
  start-page: 62
  year: 2015
  publication-title: Biomaterials
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 27
  start-page: 576
  year: 2015
  publication-title: Adv. Mater.
– volume: 259
  start-page: 187
  year: 2017
  publication-title: J. Controlled Release
– volume: 25
  start-page: 957
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 240
  start-page: 9
  year: 2017
  publication-title: Microporous Mesoporous Mater.
– volume: 26
  start-page: 6174
  year: 2014
  publication-title: Adv. Mater.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 148
  start-page: 53
  year: 2012
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 369
  year: 2008
  publication-title: Nano Lett.
– volume: 7
  start-page: 3576
  year: 2007
  publication-title: Nano Lett.
– volume: 137
  start-page: 4976
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 4834
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 2646
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5390
  year: 2011
  publication-title: ACS Nano
– volume: 9
  start-page: 4551
  year: 2018
  publication-title: Nat. Commun.
– volume: 131
  start-page: 6833
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 9611
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4303
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 9782
  year: 2013
  publication-title: Chem. Commun.
– volume: 57
  start-page: 6049
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 8411
  year: 2017
  publication-title: Int. J. Nanomed.
– volume: 25
  start-page: 3144
  year: 2013
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 3
  start-page: 2431
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 129
  start-page: 1690
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 3211
  year: 2015
  publication-title: Chem. Commun.
– volume: 55
  start-page: 2731
  year: 2019
  publication-title: Chem. Commun.
– volume: 133
  start-page: 8102
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 4168
  year: 2018
  publication-title: Chem. Mater.
– volume: 16
  start-page: 1845
  year: 2004
  publication-title: Adv. Mater.
– volume: 63
  start-page: 988
  year: 1990
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2199
  year: 2018
  publication-title: Nanoscale
– volume: 8
  start-page: 2011
  year: 2016
  publication-title: Nanoscale
– volume: 28
  start-page: 1963
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 889
  year: 2008
  publication-title: ACS Nano
– volume: 5
  start-page: 4131
  year: 2011
  publication-title: ACS Nano
– volume: 46
  start-page: 6524
  year: 2010
  publication-title: Chem. Commun.
– volume: 7
  start-page: 162
  year: 2017
  publication-title: Nanomaterials
– volume: 8
  start-page: 4007
  year: 2016
  publication-title: Nanoscale
– volume: 5
  start-page: 1408
  year: 2009
  publication-title: Small
– volume: 11
  start-page: 6591
  year: 2016
  publication-title: Int. J. Nanomed.
– volume: 7
  start-page: 6211
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 435
  year: 2014
  publication-title: Chem. Mater.
– volume: 44
  start-page: 288
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 6492
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2590
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1339
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 2801
  year: 2011
  publication-title: Nanoscale
– volume: 129
  start-page: 8845
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 391
  year: 2016
  publication-title: Nanomedicine
– volume: 49
  start-page: 65
  year: 2001
  publication-title: Microporous Mesoporous Mater.
– volume: 27
  start-page: 145
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 9788
  year: 2011
  publication-title: ACS Nano
– volume: 60
  start-page: 1278
  year: 2008
  publication-title: Adv. Drug Delivery Rev.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  start-page: 60
  year: 2010
  publication-title: Microporous Mesoporous Mater.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 46
  start-page: 792
  year: 2013
  publication-title: Acc. Chem. Res.
– ident: e_1_2_9_77_1
  doi: 10.1039/C5NR06246B
– ident: e_1_2_9_18_1
  doi: 10.1021/jacs.5b02700
– ident: e_1_2_9_41_1
  doi: 10.1021/acsnano.5b04378
– ident: e_1_2_9_51_1
  doi: 10.1021/acsami.7b18577
– ident: e_1_2_9_86_1
  doi: 10.1039/C4CY00996G
– ident: e_1_2_9_89_1
  doi: 10.1039/C7NR07875G
– ident: e_1_2_9_12_1
  doi: 10.1246/bcsj.63.988
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.201902652
– ident: e_1_2_9_55_1
  doi: 10.1016/j.micromeso.2016.11.002
– ident: e_1_2_9_44_1
  doi: 10.1021/acsami.5b05893
– ident: e_1_2_9_112_1
  doi: 10.1021/nn200365a
– ident: e_1_2_9_116_1
  doi: 10.1002/cbic.200700509
– ident: e_1_2_9_92_1
  doi: 10.1002/adfm.201302988
– ident: e_1_2_9_13_1
  doi: 10.1016/j.nantod.2009.02.001
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jconrel.2016.03.030
– ident: e_1_2_9_19_1
  doi: 10.1002/advs.201901690
– ident: e_1_2_9_62_1
  doi: 10.1021/ja810011p
– ident: e_1_2_9_85_1
  doi: 10.1039/c0cc01786h
– ident: e_1_2_9_59_1
  doi: 10.1021/acsami.5b00368
– ident: e_1_2_9_63_1
  doi: 10.1002/smll.201000538
– ident: e_1_2_9_26_1
  doi: 10.1002/smll.200900005
– ident: e_1_2_9_11_1
  doi: 10.1038/359710a0
– ident: e_1_2_9_70_1
  doi: 10.1021/cm5040276
– ident: e_1_2_9_54_1
  doi: 10.1039/c1cc16004d
– ident: e_1_2_9_48_1
  doi: 10.1002/adma.201801198
– ident: e_1_2_9_96_1
  doi: 10.1038/s41467-018-06730-z
– ident: e_1_2_9_5_1
  doi: 10.1021/cm402592t
– ident: e_1_2_9_97_1
  doi: 10.1002/adma.201404226
– ident: e_1_2_9_102_1
  doi: 10.1002/celc.201500244
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cej.2019.123138
– ident: e_1_2_9_115_1
  doi: 10.1016/j.jconrel.2016.11.032
– ident: e_1_2_9_84_1
  doi: 10.1039/C5TB00634A
– ident: e_1_2_9_105_1
  doi: 10.1126/science.1231391
– ident: e_1_2_9_67_1
  doi: 10.1021/ja9916658
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jcis.2011.03.004
– ident: e_1_2_9_69_1
  doi: 10.1002/anie.201505538
– ident: e_1_2_9_110_1
  doi: 10.1021/tx300166u
– ident: e_1_2_9_98_1
  doi: 10.1016/j.biomaterials.2016.05.030
– ident: e_1_2_9_30_1
  doi: 10.1039/C8CC09389J
– ident: e_1_2_9_103_1
  doi: 10.1021/acsami.5b11310
– ident: e_1_2_9_88_1
  doi: 10.3390/nano7070162
– ident: e_1_2_9_87_1
  doi: 10.1002/adma.200400349
– ident: e_1_2_9_73_1
  doi: 10.1016/j.cej.2019.03.272
– ident: e_1_2_9_106_1
  doi: 10.1002/smll.201501449
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.200503253
– ident: e_1_2_9_35_1
  doi: 10.1039/c3cc45967e
– ident: e_1_2_9_42_1
  doi: 10.1039/C3TB21268H
– ident: e_1_2_9_1_1
  doi: 10.1016/j.addr.2015.09.009
– ident: e_1_2_9_81_1
  doi: 10.1021/acsami.6b13876
– ident: e_1_2_9_17_1
  doi: 10.1021/ar3000986
– ident: e_1_2_9_64_1
  doi: 10.1016/j.biomaterials.2016.03.019
– ident: e_1_2_9_83_1
  doi: 10.1039/c2cc30411b
– ident: e_1_2_9_2_1
  doi: 10.1039/c1cs15246g
– ident: e_1_2_9_21_1
  doi: 10.1039/c1cc11760b
– ident: e_1_2_9_9_1
  doi: 10.1039/c1nr10224a
– ident: e_1_2_9_71_1
  doi: 10.1016/j.micromeso.2011.07.014
– ident: e_1_2_9_27_1
  doi: 10.1021/nn200809t
– ident: e_1_2_9_75_1
  doi: 10.1039/C5RA16023E
– ident: e_1_2_9_50_1
  doi: 10.1021/acsami.6b11324
– ident: e_1_2_9_22_1
  doi: 10.1021/ja1070653
– ident: e_1_2_9_68_1
  doi: 10.1002/chem.201403393
– ident: e_1_2_9_109_1
  doi: 10.1016/j.addr.2008.03.012
– ident: e_1_2_9_61_1
  doi: 10.1021/ja110094g
– ident: e_1_2_9_93_1
  doi: 10.1080/10717544.2018.1425779
– ident: e_1_2_9_40_1
  doi: 10.2147/IJN.S148438
– ident: e_1_2_9_4_1
  doi: 10.1039/C6TB03066A
– ident: e_1_2_9_91_1
  doi: 10.1016/j.biomaterials.2015.04.053
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.201401931
– ident: e_1_2_9_108_1
  doi: 10.1021/ar2000259
– ident: e_1_2_9_90_1
  doi: 10.1021/nl0727415
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201300958
– ident: e_1_2_9_111_1
  doi: 10.1021/nn800072t
– ident: e_1_2_9_15_1
  doi: 10.1039/C2CS35297D
– ident: e_1_2_9_24_1
  doi: 10.1021/cm3001688
– ident: e_1_2_9_10_1
  doi: 10.2217/nnm.15.212
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.200460892
– ident: e_1_2_9_37_1
  doi: 10.2147/IJN.S120611
– ident: e_1_2_9_118_1
  doi: 10.1039/C5NR08560H
– ident: e_1_2_9_113_1
  doi: 10.1002/adhm.201700720
– ident: e_1_2_9_60_1
  doi: 10.1016/j.biomaterials.2015.08.021
– ident: e_1_2_9_76_1
  doi: 10.1021/ja067379v
– ident: e_1_2_9_7_1
  doi: 10.1039/C7CS00219J
– ident: e_1_2_9_117_1
  doi: 10.1016/j.micromeso.2009.11.015
– ident: e_1_2_9_28_1
  doi: 10.1021/ja910846q
– ident: e_1_2_9_80_1
  doi: 10.1021/nn2033105
– ident: e_1_2_9_46_1
  doi: 10.1002/anie.201806759
– ident: e_1_2_9_33_1
  doi: 10.1038/srep06064
– ident: e_1_2_9_78_1
  doi: 10.1002/adma.201505524
– ident: e_1_2_9_58_1
  doi: 10.1021/ja907838s
– ident: e_1_2_9_95_1
  doi: 10.1016/j.biomaterials.2008.07.007
– ident: e_1_2_9_52_1
  doi: 10.1021/jacs.7b01118
– ident: e_1_2_9_38_1
  doi: 10.1039/C5NR05649G
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cej.2013.06.032
– ident: e_1_2_9_104_1
  doi: 10.1039/C4CC10064F
– ident: e_1_2_9_32_1
  doi: 10.1021/ja206998x
– ident: e_1_2_9_3_1
  doi: 10.1002/adma.201205292
– ident: e_1_2_9_100_1
  doi: 10.1021/ja508733r
– ident: e_1_2_9_114_1
  doi: 10.1021/ja201779d
– ident: e_1_2_9_107_1
  doi: 10.1021/jacs.7b10694
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.chemmater.8b01873
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.201401124
– ident: e_1_2_9_119_1
  doi: 10.1039/C5NR01050K
– ident: e_1_2_9_49_1
  doi: 10.1021/ja0719780
– ident: e_1_2_9_57_1
  doi: 10.1016/j.biomaterials.2011.10.017
– ident: e_1_2_9_79_1
  doi: 10.1002/adma.201400815
– ident: e_1_2_9_39_1
  doi: 10.1016/j.biomaterials.2014.01.013
– ident: e_1_2_9_74_1
  doi: 10.1021/acsbiomaterials.7b00569
– ident: e_1_2_9_31_1
  doi: 10.1002/adfm.201404629
– ident: e_1_2_9_66_1
  doi: 10.1038/47229
– ident: e_1_2_9_99_1
  doi: 10.1021/jacs.6b00902
– ident: e_1_2_9_101_1
  doi: 10.1021/acsami.7b06906
– ident: e_1_2_9_43_1
  doi: 10.1002/adfm.201402755
– ident: e_1_2_9_94_1
  doi: 10.1021/nl0714785
– ident: e_1_2_9_25_1
  doi: 10.1039/C5CS00243E
– ident: e_1_2_9_45_1
  doi: 10.1016/j.biomaterials.2012.10.072
– ident: e_1_2_9_6_1
  doi: 10.1039/c3cs35405a
– ident: e_1_2_9_36_1
  doi: 10.1039/C5TB00304K
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.201712996
– ident: e_1_2_9_72_1
  doi: 10.1016/S1387-1811(01)00404-8
SSID ssj0009606
Score 2.713284
SecondaryResourceType review_article
Snippet Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1907035
SubjectTerms Animals
Assemblies
Biocompatibility
Biocompatible Materials - chemistry
Biomedical materials
Diagnostic systems
Humans
Materials science
mesoporous silica nanoparticles
metal shielding
Morphology
nanomaterials
Nanoparticles
Porosity
Porous materials
Silicon dioxide
Silicon Dioxide - chemistry
surface modification
Tissue engineering
Title Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201907035
https://www.ncbi.nlm.nih.gov/pubmed/32319133
https://www.proquest.com/docview/2411063211
https://www.proquest.com/docview/2393574127
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6jZt-jiuLxZhPfgAwUNJ8wBR2sV1L_56Z9Jtd1cRQW8NTdI0mcl8M0m-ABwFIb4pZIbILUIHxVjrZyaxfpCmJuqgBY8TOu_cv4l7D9H1o3icOsVf80O0ATfSDDdfk4LLYng6IQ2V2vEGoUFDoaVT5kEo3Drt7YQ_iuC5I9sLhZ_FUdqwNnb46WzxWav0DWrOIldneq6WQTaNrnecvJyM3osT9fGFz_E_f7UCS2Ncyrq1IK3CnCnXYHGKrXAdnnAmrqYXHjS7c-yz-MhkianRm5XKsLPnisxlHWVElM8qy_pmWCHUr0ZDdvdMgUJGtQ2afXkb8HB1eX_e88d3M_gqSmLhB5mhOdbwQJpAadXhBbehKjKZCE3X_BkjY3I-41hopXScpTqyRaqTwBKFWLgJ82VVmm1gmVJKqFR0pFZRkEjMSJzyWI9IeGgLD_xmbHI1Ji6n-zNe85pymefUaXnbaR4ct_kHNWXHjzn3mqHOx6o7zBHSoJscomPswWH7GpWOVlJkabCjcscbh8LNEw-2ahFpPxUiYs7Q8_eAu4H-pQ1596LfbVM7fym0CwucogAuNrQH8zj0Zh-h0ntx4NThEzsZCq0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOBQOQFse4VVXqsQpsHHiPI4LFG1blkMBqVIPluOHhEAJYtkLv54ZZxNYUFUJbrFiO4494_lmbH8G-BbF-KZUBSK3BB0U61xY2MyFUZ7bpIcWPM3ovPPwLB1cJj__iHY3IZ2FafghuoAbaYafr0nBKSB98MQaqownDkKLhlIrZmGeFulIN49_PzFIEUD3dHuxCIs0yVvexh4_mC4_bZdegc1p7OqNz8kylG2zmz0n1_vj-3JfP7xgdHzXf63A0gSasn4jSx9hxlafYPEZYeFn-IuTcf187cGwc09Ai49MVZga3zmlLTu8qsliNoFGBPqsdmxoRzWi_Xo8YudXFCtkVNttuzVvFS5Pvl8cDcLJ9QyhTrJUhFFhaZq1PFI20kb3eMldrMtCZcLQTX_WqpT8zzQVRmuTFrlJXJmbLHLEIhavwVxVV3YDWKG1FjoXPWV0EmUKMxKtPNYjMh67MoCwHRypJ9zldIXGjWxYl7mkTpNdpwWw1-W_bVg7_plzux1rOdHekURUg55yjL5xAF-716h3tJiiKosdJT11HMo3zwJYb2Sk-1SMoLlA5z8A7kf6P22Q_eNhv0ttvqXQF_gwuBieytMfZ7-2YIFTUMCHirZhDsXA7iByui93vW48AuceDsk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKrKofRJ01JwJaSeAhsndpLjAl0B7SIERULqwXL8kFCrZNVlL_x6ZpxN2AVVldpbrNiOY894vhnbnwG2kxTfVLpE5Jahg-K8j0uX-zgpCpcN0ILLnM47j0_k4UV2fCkuF07xt_wQfcCNNCPM16TgE-t370hDtQ28QWjQUGjFY3iSSXSxCBad3RFIET4PbHupiEuZFR1t44DvLpdfNksPsOYydA22Z7QGumt1u-Xk587sutoxN_cIHf_nt17A8zkwZcNWkl7CI1e_gtUFusLX8AOn4mZx5cGy80A_i49M15ia_fbaOLZ31ZC9bMOMCPNZ49nYTRvE-s1sys6vKFLIqLZJtzHvDVyMvnzfP4znlzPEJsuliJPS0STreKJdYqwZ8Ir71FSlzoWle_6c05K8TymFNcbKsrCZrwqbJ544xNK3sFI3tXsHrDTGCFOIgbYmS3KNGYlUHusROU99FUHcjY0yc-ZyukDjl2o5l7miTlN9p0Xwuc8_aTk7_phzoxtqNdfdqUJMg35yip5xBJ_616h1tJSia4cdpQJxHEo3zyNYb0Wk_1SKkLlE1z8CHgb6L21Qw4PxsE-9_5dCW_D09GCkvh2dfP0AzzhFBEKcaANWUArcR4RN19Vm0IxbqRANeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoarchitectured+Structure+and+Surface+Biofunctionality+of+Mesoporous+Silica+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kankala%2C+Ranjith+Kumar&rft.au=Han%2C+Ya-Hui&rft.au=Na%2C+Jongbeom&rft.au=Lee%2C+Chia-Hung&rft.date=2020-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft.spage=e1907035&rft_id=info:doi/10.1002%2Fadma.201907035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon