Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorp...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 23; pp. e1907035 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201907035 |
Cover
Abstract | Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Mesoporous silica nanoparticles (MSNs) have garnered enormous interest owing to their highly advantageous physicochemical and morphological attributes. Collectively, progression has been made by modifying the surface of the siliceous frameworks through incorporating diverse supramolecular assemblies. An overview of the fabrication of MSNs and discussions on significant advances in engineering of MSNs, along with their scope toward clinical translation, is provided. |
---|---|
AbstractList | Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation. Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation. Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)‐responsive delivery‐associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation. Mesoporous silica nanoparticles (MSNs) have garnered enormous interest owing to their highly advantageous physicochemical and morphological attributes. Collectively, progression has been made by modifying the surface of the siliceous frameworks through incorporating diverse supramolecular assemblies. An overview of the fabrication of MSNs and discussions on significant advances in engineering of MSNs, along with their scope toward clinical translation, is provided. |
Author | Lee, Chia‐Hung Chen, Ai‐Zheng Wu, Kevin C.‐W. Ok, Yong Sik Na, Jongbeom Kankala, Ranjith Kumar Wang, Shi‐Bin Kimura, Tatsuo Han, Ya‐Hui Sun, Ziqi Yamauchi, Yusuke |
Author_xml | – sequence: 1 givenname: Ranjith Kumar surname: Kankala fullname: Kankala, Ranjith Kumar organization: Huaqiao University – sequence: 2 givenname: Ya‐Hui surname: Han fullname: Han, Ya‐Hui organization: Huaqiao University – sequence: 3 givenname: Jongbeom surname: Na fullname: Na, Jongbeom organization: National Institute for Materials Science (NIMS) – sequence: 4 givenname: Chia‐Hung surname: Lee fullname: Lee, Chia‐Hung organization: National Dong Hwa University – sequence: 5 givenname: Ziqi surname: Sun fullname: Sun, Ziqi organization: Queensland University of Technology – sequence: 6 givenname: Shi‐Bin surname: Wang fullname: Wang, Shi‐Bin organization: Huaqiao University – sequence: 7 givenname: Tatsuo surname: Kimura fullname: Kimura, Tatsuo organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 8 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik organization: Korea University – sequence: 9 givenname: Yusuke orcidid: 0000-0001-7854-927X surname: Yamauchi fullname: Yamauchi, Yusuke email: y.yamauchi@uq.edu.au organization: National Institute for Materials Science (NIMS) – sequence: 10 givenname: Ai‐Zheng surname: Chen fullname: Chen, Ai‐Zheng email: azchen@hqu.edu.cn organization: Huaqiao University – sequence: 11 givenname: Kevin C.‐W. surname: Wu fullname: Wu, Kevin C.‐W. email: kevinwu@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32319133$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEURi0URDaBlhKNREMzi6-f43IJTymPIlBRjLz2HeFodrzYHkX77_FmQ5AioVS2pXOu7e87IUdTnJCQ10CXQCl7b_3GLhkFQzXl8hlZgGTQCmrkEVlQw2VrlOiOyUnON5RSo6h6QY4542CA8wX5eWmnaJP7FQq6Mif0zXVJ8922sVM9zWmwDpsPIQ7z5EqIkx1D2TVxaC4wx21Mcc7NdRiDs81-2tamEtyI-SV5Ptgx46v79ZT8-Pzp-9nX9vzqy7ez1XnrhFayBYMglEYGFsF5R9maDdytjdXSd1pQRKuYFEYp6Z3zynReDOvOaxik0B0_Je8Oc7cp_p4xl34TssNxtBPWt_WM1xy0AKYr-vYRehPnVH9UKQFAFWcAlXpzT83rDfp-m8LGpl3_N7YKLA-ASzHnhMMDArTf99Lve-kfeqmCeCS4UOw-zJJsGP-vmYN2G0bcPXFJv_p4sfrn_gFdsKJM |
CitedBy_id | crossref_primary_10_1007_s13399_023_04636_5 crossref_primary_10_1016_j_cej_2023_144972 crossref_primary_10_1016_j_fuel_2024_131162 crossref_primary_10_1016_j_ecoenv_2023_115422 crossref_primary_10_1007_s11356_021_16414_9 crossref_primary_10_1088_1361_6528_ace4d3 crossref_primary_10_1080_14686996_2021_1955603 crossref_primary_10_1186_s12951_024_02680_5 crossref_primary_10_1016_j_ijbiomac_2025_141913 crossref_primary_10_1002_advs_202004586 crossref_primary_10_1002_cssc_202300477 crossref_primary_10_1016_j_jddst_2024_105768 crossref_primary_10_1016_j_mtcomm_2025_111635 crossref_primary_10_1016_j_seppur_2022_121517 crossref_primary_10_1016_j_jbiotec_2023_08_002 crossref_primary_10_3389_fnut_2022_1077893 crossref_primary_10_1016_j_biomaterials_2024_122968 crossref_primary_10_1007_s10953_024_01375_7 crossref_primary_10_1021_acsnano_1c03456 crossref_primary_10_1088_2053_1591_abbf7e crossref_primary_10_1039_D4RA03074E crossref_primary_10_1021_acs_langmuir_4c03157 crossref_primary_10_1002_aoc_7483 crossref_primary_10_1016_j_ceramint_2023_09_081 crossref_primary_10_1021_acs_jpcc_4c05815 crossref_primary_10_1021_acsnano_2c12817 crossref_primary_10_12677_jcpm_2024_32079 crossref_primary_10_1039_D2RA06668H crossref_primary_10_1016_j_msec_2021_112274 crossref_primary_10_3390_pr10122595 crossref_primary_10_1016_j_bioorg_2024_107505 crossref_primary_10_3390_nano10061116 crossref_primary_10_1021_accountsmr_0c00028 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1039_D3RA07231B crossref_primary_10_1088_1361_6528_ac467a crossref_primary_10_1016_j_cis_2024_103087 crossref_primary_10_1021_acsami_1c07127 crossref_primary_10_1021_acsanm_4c02641 crossref_primary_10_1021_acsami_3c02052 crossref_primary_10_1021_acsnano_5c01877 crossref_primary_10_1021_jacs_1c04836 crossref_primary_10_1080_00032719_2022_2083144 crossref_primary_10_1039_D3CS00124E crossref_primary_10_1208_s12249_024_02734_9 crossref_primary_10_1002_ange_202215078 crossref_primary_10_1002_smll_202104449 crossref_primary_10_1016_j_cej_2024_154914 crossref_primary_10_1016_j_bioadv_2022_212821 crossref_primary_10_1063_5_0029060 crossref_primary_10_1016_j_jare_2023_01_019 crossref_primary_10_1016_j_bioactmat_2024_05_037 crossref_primary_10_3390_pharmaceutics15020560 crossref_primary_10_3390_biomedicines9010073 crossref_primary_10_1177_08853282231200711 crossref_primary_10_1016_j_ijbiomac_2024_138311 crossref_primary_10_1155_2022_2131583 crossref_primary_10_1039_D1NR04048K crossref_primary_10_1039_D3TB00364G crossref_primary_10_1016_j_cobme_2021_100294 crossref_primary_10_3389_fbioe_2022_1095837 crossref_primary_10_1002_slct_202400450 crossref_primary_10_1002_adma_202107212 crossref_primary_10_1021_acs_analchem_4c06166 crossref_primary_10_1016_j_actbio_2022_10_019 crossref_primary_10_1016_j_ijpharm_2020_119921 crossref_primary_10_1016_j_aac_2024_02_001 crossref_primary_10_1186_s12951_023_02093_w crossref_primary_10_1007_s40544_022_0648_z crossref_primary_10_1021_acsnano_4c16280 crossref_primary_10_1016_j_ijbiomac_2020_08_211 crossref_primary_10_1002_adma_202100820 crossref_primary_10_1016_j_ijpharm_2024_124314 crossref_primary_10_1039_D0TA06987F crossref_primary_10_1038_s41427_023_00500_0 crossref_primary_10_3389_fbioe_2024_1343329 crossref_primary_10_1002_smll_202102887 crossref_primary_10_1080_24701556_2023_2267522 crossref_primary_10_1016_j_ceramint_2020_10_022 crossref_primary_10_1016_j_cej_2024_157272 crossref_primary_10_22159_ijap_2024v16i6_50767 crossref_primary_10_3389_fchem_2022_872069 crossref_primary_10_1021_acs_langmuir_1c01151 crossref_primary_10_1016_j_bioactmat_2022_11_018 crossref_primary_10_1002_cmdc_202300374 crossref_primary_10_1016_j_carbon_2023_01_063 crossref_primary_10_3389_fnano_2022_999923 crossref_primary_10_1002_nano_202200216 crossref_primary_10_1016_j_matdes_2023_111794 crossref_primary_10_1016_j_fuel_2025_134840 crossref_primary_10_2147_IJN_S387428 crossref_primary_10_1016_j_jtice_2020_10_023 crossref_primary_10_1039_D0CC06333A crossref_primary_10_1016_j_toxrep_2023_05_006 crossref_primary_10_1016_j_ccr_2023_215051 crossref_primary_10_1021_acsabm_3c00256 crossref_primary_10_1007_s00210_025_04038_6 crossref_primary_10_3390_pharmaceutics15020658 crossref_primary_10_1016_j_addr_2022_114270 crossref_primary_10_1016_j_cclet_2024_110221 crossref_primary_10_1016_j_colsurfb_2023_113715 crossref_primary_10_1016_j_mtcomm_2025_111745 crossref_primary_10_3390_nano12152520 crossref_primary_10_1016_j_jcis_2022_05_099 crossref_primary_10_1039_D0BM01904F crossref_primary_10_1002_adfm_202208513 crossref_primary_10_1016_j_indcrop_2022_115387 crossref_primary_10_3390_polym15102317 crossref_primary_10_1016_j_ejpb_2021_04_020 crossref_primary_10_1002_agt2_39 crossref_primary_10_1039_D0NR05132B crossref_primary_10_1021_acs_nanolett_2c04229 crossref_primary_10_3390_pharmaceutics14061265 crossref_primary_10_1002_chem_202400851 crossref_primary_10_1016_j_msec_2021_111918 crossref_primary_10_2109_jcersj2_22078 crossref_primary_10_1016_j_nantod_2021_101146 crossref_primary_10_1016_j_sajce_2024_08_013 crossref_primary_10_1021_acs_biomac_1c01343 crossref_primary_10_1016_j_jddst_2022_103983 crossref_primary_10_1002_mco2_187 crossref_primary_10_2147_IJN_S383324 crossref_primary_10_1016_j_jcis_2021_12_126 crossref_primary_10_1016_j_jcis_2021_02_069 crossref_primary_10_1016_S1872_2067_24_60070_7 crossref_primary_10_1038_s41427_023_00469_w crossref_primary_10_1016_j_cej_2022_134820 crossref_primary_10_3390_ma17153877 crossref_primary_10_1016_j_jenvman_2023_118629 crossref_primary_10_3390_polym15102339 crossref_primary_10_1016_j_colsurfb_2020_111405 crossref_primary_10_1039_D3MA00021D crossref_primary_10_1016_j_jssc_2022_123639 crossref_primary_10_1039_D1NR07513F crossref_primary_10_1021_acsanm_4c07241 crossref_primary_10_1016_j_rechem_2023_100769 crossref_primary_10_1007_s00289_023_04934_y crossref_primary_10_1016_j_cej_2025_161336 crossref_primary_10_1016_j_jconrel_2024_01_005 crossref_primary_10_1002_fsn3_3933 crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1016_j_colsurfa_2022_128414 crossref_primary_10_3390_nano12213767 crossref_primary_10_1016_j_jpha_2024_101095 crossref_primary_10_1021_acsmaterialslett_4c01142 crossref_primary_10_2139_ssrn_4134160 crossref_primary_10_1021_acsnano_4c07119 crossref_primary_10_1038_s41596_022_00784_6 crossref_primary_10_1021_acs_molpharmaceut_3c01095 crossref_primary_10_1021_acsanm_2c01612 crossref_primary_10_1016_j_seppur_2024_127301 crossref_primary_10_1021_acsomega_4c01607 crossref_primary_10_1016_j_jconrel_2022_05_019 crossref_primary_10_1002_adhm_202200665 crossref_primary_10_1007_s40820_020_00533_y crossref_primary_10_1016_j_carbpol_2021_118822 crossref_primary_10_1016_j_cej_2023_142353 crossref_primary_10_1186_s12951_021_01139_1 crossref_primary_10_1088_1361_6528_ad42a3 crossref_primary_10_1016_j_jddst_2020_102170 crossref_primary_10_1016_j_ijpharm_2022_122529 crossref_primary_10_1007_s11095_020_02917_6 crossref_primary_10_1016_j_micromeso_2022_112418 crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_3390_nano12111940 crossref_primary_10_1007_s12668_024_01301_7 crossref_primary_10_1016_j_mtchem_2022_101059 crossref_primary_10_1016_j_ijpx_2022_100116 crossref_primary_10_1088_2631_6331_adb004 crossref_primary_10_1016_j_ijbiomac_2022_12_266 crossref_primary_10_1002_sia_6883 crossref_primary_10_1016_j_ccr_2022_214765 crossref_primary_10_1002_nano_202300131 crossref_primary_10_1007_s12633_023_02662_6 crossref_primary_10_1002_slct_202400859 crossref_primary_10_3390_pharmaceutics13101615 crossref_primary_10_1016_j_actbio_2021_05_007 crossref_primary_10_1016_j_nantod_2021_101231 crossref_primary_10_1016_j_biotechadv_2023_108277 crossref_primary_10_1016_j_fpc_2024_03_001 crossref_primary_10_1021_acsami_4c03227 crossref_primary_10_1007_s10853_023_09193_w crossref_primary_10_1016_j_bioactmat_2024_01_001 crossref_primary_10_1038_s41467_025_56100_9 crossref_primary_10_1021_acs_langmuir_4c01863 crossref_primary_10_1007_s10965_021_02825_2 crossref_primary_10_1016_j_ccr_2021_214309 crossref_primary_10_1016_j_ccr_2024_216052 crossref_primary_10_1039_D2CC04680F crossref_primary_10_1039_D1CS01022K crossref_primary_10_1002_advs_202407609 crossref_primary_10_1002_adtp_202300062 crossref_primary_10_3390_molecules26154636 crossref_primary_10_3390_c7040073 crossref_primary_10_1016_j_nano_2021_102494 crossref_primary_10_1039_D3TB01175E crossref_primary_10_1038_s41392_023_01481_w crossref_primary_10_1002_slct_202200574 crossref_primary_10_1002_adtp_202000218 crossref_primary_10_3390_molecules25204722 crossref_primary_10_1016_j_bioactmat_2022_07_023 crossref_primary_10_1016_j_ejps_2023_106372 crossref_primary_10_1007_s12274_021_4055_y crossref_primary_10_1088_2053_1591_acc82d crossref_primary_10_2147_IJN_S334785 crossref_primary_10_3390_nano12203693 crossref_primary_10_33102_mjosht_v10i1_402 crossref_primary_10_3389_fonc_2021_789330 crossref_primary_10_1021_jacs_0c10098 crossref_primary_10_1016_j_ejps_2024_106719 crossref_primary_10_1021_jacs_2c12214 crossref_primary_10_1016_j_envres_2023_117264 crossref_primary_10_1002_anie_202319567 crossref_primary_10_3390_coatings12081161 crossref_primary_10_1002_VIW_20200117 crossref_primary_10_3389_fchem_2022_952675 crossref_primary_10_1007_s42250_023_00688_2 crossref_primary_10_1016_j_actbio_2021_03_024 crossref_primary_10_1021_acs_chemrev_1c00236 crossref_primary_10_1016_j_jconrel_2021_09_005 crossref_primary_10_1021_acsabm_1c00710 crossref_primary_10_1016_j_eurpolymj_2024_112870 crossref_primary_10_1039_D3NJ04040B crossref_primary_10_1016_j_fochx_2024_101953 crossref_primary_10_2217_nnm_2019_0440 crossref_primary_10_1021_acsmaterialsau_1c00071 crossref_primary_10_1021_acsami_1c05962 crossref_primary_10_1021_acs_chemmater_1c00192 crossref_primary_10_1007_s40005_023_00632_z crossref_primary_10_3103_S1061386224700079 crossref_primary_10_1002_adfm_202417584 crossref_primary_10_1002_adhm_202303582 crossref_primary_10_3390_pharmaceutics15010020 crossref_primary_10_1016_j_jma_2022_05_003 crossref_primary_10_1002_smll_202408898 crossref_primary_10_1002_slct_202204968 crossref_primary_10_1016_j_micromeso_2022_111943 crossref_primary_10_1002_anie_202206870 crossref_primary_10_1007_s11426_023_1606_8 crossref_primary_10_1039_D2SM00939K crossref_primary_10_1002_smtd_202201195 crossref_primary_10_1016_j_ejps_2022_106261 crossref_primary_10_1016_j_jchromb_2023_123961 crossref_primary_10_2147_IJN_S290537 crossref_primary_10_1016_j_colsurfb_2023_113346 crossref_primary_10_1208_s12249_022_02464_w crossref_primary_10_1007_s43994_024_00165_7 crossref_primary_10_1016_j_cej_2023_144154 crossref_primary_10_3390_ijms231911604 crossref_primary_10_1021_acsami_2c10506 crossref_primary_10_1016_j_inoche_2024_112483 crossref_primary_10_1021_acs_accounts_4c00502 crossref_primary_10_1186_s12951_022_01315_x crossref_primary_10_1021_acsbiomaterials_0c00830 crossref_primary_10_1002_elps_202200184 crossref_primary_10_1038_s41467_023_40017_2 crossref_primary_10_3390_jfb14090483 crossref_primary_10_1016_j_ijbiomac_2025_141581 crossref_primary_10_1039_D1CP05458A crossref_primary_10_3390_molecules27031133 crossref_primary_10_1016_j_bios_2022_114664 crossref_primary_10_1038_s41427_024_00560_w crossref_primary_10_1016_j_carpta_2024_100634 crossref_primary_10_1021_acsami_2c13076 crossref_primary_10_1016_j_addr_2022_114502 crossref_primary_10_1063_5_0231279 crossref_primary_10_1021_acsanm_1c00005 crossref_primary_10_1039_D2RA01587K crossref_primary_10_1246_bcsj_20230167 crossref_primary_10_1002_adhm_202201884 crossref_primary_10_1021_acsabm_1c00753 crossref_primary_10_1016_j_actbio_2020_09_009 crossref_primary_10_1021_acsbiomaterials_3c01749 crossref_primary_10_1002_adsu_202300395 crossref_primary_10_1016_j_nwnano_2023_100005 crossref_primary_10_1016_j_chempr_2021_01_001 crossref_primary_10_1021_jacs_1c11749 crossref_primary_10_1126_sciadv_adi7502 crossref_primary_10_1016_j_jcis_2022_10_157 crossref_primary_10_1039_D2CE00872F crossref_primary_10_1016_j_ijbiomac_2024_129391 crossref_primary_10_1186_s12951_023_02165_x crossref_primary_10_1002_adtp_202100172 crossref_primary_10_3390_bios14070326 crossref_primary_10_1021_acsami_1c11138 crossref_primary_10_1080_1061186X_2020_1812614 crossref_primary_10_1016_j_porgcoat_2023_107441 crossref_primary_10_1021_acsmaterialslett_3c01615 crossref_primary_10_1021_acsabm_4c00019 crossref_primary_10_1016_j_ejpb_2024_114503 crossref_primary_10_1002_bab_2672 crossref_primary_10_1016_j_colsurfb_2023_113387 crossref_primary_10_3390_bioengineering10060637 crossref_primary_10_1002_cjce_24921 crossref_primary_10_1016_j_jddst_2023_104970 crossref_primary_10_1016_j_phrs_2024_107308 crossref_primary_10_1016_j_bioactmat_2023_01_003 crossref_primary_10_1021_acs_molpharmaceut_2c00374 crossref_primary_10_2147_IJN_S451919 crossref_primary_10_1039_D3MA00066D crossref_primary_10_1016_j_brainres_2022_147786 crossref_primary_10_1038_s41392_023_01654_7 crossref_primary_10_1016_j_cej_2022_138042 crossref_primary_10_1002_adhm_202400888 crossref_primary_10_1016_j_heliyon_2024_e29458 crossref_primary_10_1002_pat_5348 crossref_primary_10_1039_D1AN01077H crossref_primary_10_1016_j_biomaterials_2021_121028 crossref_primary_10_1002_adfm_202204714 crossref_primary_10_2174_1871530323666230315145332 crossref_primary_10_1016_j_trac_2024_117846 crossref_primary_10_1038_s41545_025_00435_9 crossref_primary_10_1016_j_ejps_2023_106652 crossref_primary_10_1002_slct_202402022 crossref_primary_10_1007_s12274_022_4191_z crossref_primary_10_1021_acs_chemrev_2c00050 crossref_primary_10_1016_j_colsurfb_2024_114460 crossref_primary_10_1002_cbic_202200713 crossref_primary_10_1088_1361_6528_ac6bb0 crossref_primary_10_2147_IJN_S293190 crossref_primary_10_1080_10717544_2022_2075985 crossref_primary_10_1016_j_matlet_2022_133516 crossref_primary_10_1002_anie_202215078 crossref_primary_10_1021_acsaenm_3c00626 crossref_primary_10_2147_IJN_S458086 crossref_primary_10_1002_adma_202004654 crossref_primary_10_1016_j_jpcs_2022_111190 crossref_primary_10_1016_j_aca_2024_343420 crossref_primary_10_1016_j_jconrel_2022_10_028 crossref_primary_10_3390_molecules28020594 crossref_primary_10_1016_j_ensm_2023_102768 crossref_primary_10_1016_j_trac_2024_117945 crossref_primary_10_3390_pharmaceutics15102434 crossref_primary_10_1038_s41467_023_36832_2 crossref_primary_10_1016_j_jddst_2023_104305 crossref_primary_10_1021_acs_inorgchem_4c00626 crossref_primary_10_1016_j_apsb_2023_08_021 crossref_primary_10_1016_j_electacta_2021_138195 crossref_primary_10_1016_j_biopha_2023_114643 crossref_primary_10_3389_fbioe_2022_845821 crossref_primary_10_1002_smll_202006925 crossref_primary_10_1016_j_carbpol_2021_118277 crossref_primary_10_31436_jop_v4i2_264 crossref_primary_10_1002_advs_202306884 crossref_primary_10_1016_j_micromeso_2020_110774 crossref_primary_10_1016_j_jma_2025_01_027 crossref_primary_10_1007_s11426_020_9869_4 crossref_primary_10_1021_acssuschemeng_3c00856 crossref_primary_10_1007_s13346_024_01609_7 crossref_primary_10_1016_j_isci_2020_101687 crossref_primary_10_1002_smll_202106581 crossref_primary_10_1002_smll_202106580 crossref_primary_10_1007_s11706_020_0526_4 crossref_primary_10_1021_acs_langmuir_0c02298 crossref_primary_10_1039_D2QM00133K crossref_primary_10_1016_j_pmatsci_2024_101314 crossref_primary_10_1021_acsbiomaterials_0c01644 crossref_primary_10_1016_j_ijpharm_2024_124775 crossref_primary_10_1016_j_micromeso_2021_110967 crossref_primary_10_1016_j_jclepro_2022_135157 crossref_primary_10_1016_j_eng_2021_12_021 crossref_primary_10_1002_adhm_202002138 crossref_primary_10_1080_02726351_2021_1923591 crossref_primary_10_3390_molecules27041218 crossref_primary_10_2147_IJN_S413496 crossref_primary_10_1039_D1NA00059D crossref_primary_10_1080_01932691_2024_2348512 crossref_primary_10_1002_ange_202206870 crossref_primary_10_1016_j_cej_2021_129415 crossref_primary_10_1002_smll_202401631 crossref_primary_10_1093_rb_rbae128 crossref_primary_10_1016_j_cjche_2022_04_025 crossref_primary_10_2217_nnm_2022_0023 crossref_primary_10_1016_j_molliq_2020_114798 crossref_primary_10_1039_D1TB00481F crossref_primary_10_2217_nnm_2022_0026 crossref_primary_10_1021_acs_molpharmaceut_4c00896 crossref_primary_10_1016_j_bioactmat_2022_03_032 crossref_primary_10_1016_j_jddst_2024_105723 crossref_primary_10_1016_j_micromeso_2020_110593 crossref_primary_10_1007_s10934_024_01634_4 crossref_primary_10_1016_j_colsurfb_2025_114534 crossref_primary_10_3390_agronomy15030737 crossref_primary_10_1021_acs_molpharmaceut_2c00755 crossref_primary_10_1038_s41427_021_00320_0 crossref_primary_10_1002_smll_202409112 crossref_primary_10_1016_j_cej_2022_140868 crossref_primary_10_1016_j_ijpharm_2022_122099 crossref_primary_10_3390_nano11051293 crossref_primary_10_1016_j_ceramint_2021_08_129 crossref_primary_10_1093_rb_rbac080 crossref_primary_10_1039_D0CE01031F crossref_primary_10_3390_pharmaceutics15102483 crossref_primary_10_1016_j_mtchem_2021_100660 crossref_primary_10_3390_ijms22031256 crossref_primary_10_3390_mi15020282 crossref_primary_10_1002_admi_202102558 crossref_primary_10_1007_s10965_021_02851_0 crossref_primary_10_1186_s12943_022_01708_4 crossref_primary_10_3390_inorganics13010012 crossref_primary_10_1016_j_mtcomm_2023_107862 crossref_primary_10_1186_s12951_024_02627_w crossref_primary_10_1002_adhm_202400240 crossref_primary_10_1016_j_jhazmat_2021_126404 crossref_primary_10_1021_acsomega_2c04144 crossref_primary_10_1016_j_jcis_2021_03_001 crossref_primary_10_1016_j_actbio_2021_09_008 crossref_primary_10_1016_j_fmre_2023_08_012 crossref_primary_10_3390_nano12162848 crossref_primary_10_1016_j_addr_2021_113846 crossref_primary_10_1002_ange_202319567 crossref_primary_10_3390_pharmaceutics13020152 crossref_primary_10_1039_D0TA11770F crossref_primary_10_1016_j_eng_2024_01_030 crossref_primary_10_1016_j_bioadv_2024_213872 crossref_primary_10_1039_D1SE00817J crossref_primary_10_1002_adhm_202202245 crossref_primary_10_1021_acsabm_2c01084 |
Cites_doi | 10.1039/C5NR06246B 10.1021/jacs.5b02700 10.1021/acsnano.5b04378 10.1021/acsami.7b18577 10.1039/C4CY00996G 10.1039/C7NR07875G 10.1246/bcsj.63.988 10.1002/adfm.201902652 10.1016/j.micromeso.2016.11.002 10.1021/acsami.5b05893 10.1021/nn200365a 10.1002/cbic.200700509 10.1002/adfm.201302988 10.1016/j.nantod.2009.02.001 10.1016/j.jconrel.2016.03.030 10.1002/advs.201901690 10.1021/ja810011p 10.1039/c0cc01786h 10.1021/acsami.5b00368 10.1002/smll.201000538 10.1002/smll.200900005 10.1038/359710a0 10.1021/cm5040276 10.1039/c1cc16004d 10.1002/adma.201801198 10.1038/s41467-018-06730-z 10.1021/cm402592t 10.1002/adma.201404226 10.1002/celc.201500244 10.1016/j.cej.2019.123138 10.1016/j.jconrel.2016.11.032 10.1039/C5TB00634A 10.1126/science.1231391 10.1021/ja9916658 10.1016/j.jcis.2011.03.004 10.1002/anie.201505538 10.1021/tx300166u 10.1016/j.biomaterials.2016.05.030 10.1039/C8CC09389J 10.1021/acsami.5b11310 10.3390/nano7070162 10.1002/adma.200400349 10.1016/j.cej.2019.03.272 10.1002/smll.201501449 10.1002/anie.200503253 10.1039/c3cc45967e 10.1039/C3TB21268H 10.1016/j.addr.2015.09.009 10.1021/acsami.6b13876 10.1021/ar3000986 10.1016/j.biomaterials.2016.03.019 10.1039/c2cc30411b 10.1039/c1cs15246g 10.1039/c1cc11760b 10.1039/c1nr10224a 10.1016/j.micromeso.2011.07.014 10.1021/nn200809t 10.1039/C5RA16023E 10.1021/acsami.6b11324 10.1021/ja1070653 10.1002/chem.201403393 10.1016/j.addr.2008.03.012 10.1021/ja110094g 10.1080/10717544.2018.1425779 10.2147/IJN.S148438 10.1039/C6TB03066A 10.1016/j.biomaterials.2015.04.053 10.1002/adma.201401931 10.1021/ar2000259 10.1021/nl0727415 10.1002/anie.201300958 10.1021/nn800072t 10.1039/C2CS35297D 10.1021/cm3001688 10.2217/nnm.15.212 10.1002/anie.200460892 10.2147/IJN.S120611 10.1039/C5NR08560H 10.1002/adhm.201700720 10.1016/j.biomaterials.2015.08.021 10.1021/ja067379v 10.1039/C7CS00219J 10.1016/j.micromeso.2009.11.015 10.1021/ja910846q 10.1021/nn2033105 10.1002/anie.201806759 10.1038/srep06064 10.1002/adma.201505524 10.1021/ja907838s 10.1016/j.biomaterials.2008.07.007 10.1021/jacs.7b01118 10.1039/C5NR05649G 10.1016/j.cej.2013.06.032 10.1039/C4CC10064F 10.1021/ja206998x 10.1002/adma.201205292 10.1021/ja508733r 10.1021/ja201779d 10.1021/jacs.7b10694 10.1021/acs.chemmater.8b01873 10.1002/adma.201401124 10.1039/C5NR01050K 10.1021/ja0719780 10.1016/j.biomaterials.2011.10.017 10.1002/adma.201400815 10.1016/j.biomaterials.2014.01.013 10.1021/acsbiomaterials.7b00569 10.1002/adfm.201404629 10.1038/47229 10.1021/jacs.6b00902 10.1021/acsami.7b06906 10.1002/adfm.201402755 10.1021/nl0714785 10.1039/C5CS00243E 10.1016/j.biomaterials.2012.10.072 10.1039/c3cs35405a 10.1039/C5TB00304K 10.1002/anie.201712996 10.1016/S1387-1811(01)00404-8 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201907035 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32319133 10_1002_adma_201907035 ADMA201907035 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31800794; U1605225; 81971734 – fundername: Australian Research Council funderid: FT150100479 – fundername: Fundamental Research Funds for the Central Universities funderid: ZQN‐713 – fundername: Ministry of Science and Technology, Taiwan funderid: 109L891104 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: G20190013023 – fundername: Ministry of Science and ICT funderid: NRF‐2019M3E6A1064197 – fundername: Program for Innovative Research Team in Science and Technology in Fujian Province Universities – fundername: National Research Foundation of Korea – fundername: Natural Science Foundation of Fujian Province funderid: 2019J01076 – fundername: Natural Science Foundation of Fujian Province grantid: 2019J01076 – fundername: Ministry of Science and Technology, Taiwan grantid: 109L891104 – fundername: Fundamental Research Funds for the Central Universities grantid: ZQN-713 – fundername: National Natural Science Foundation of China grantid: 81971734 – fundername: National Natural Science Foundation of China grantid: 31800794 – fundername: National Natural Science Foundation of China grantid: U1605225 – fundername: Australian Research Council grantid: FT150100479 – fundername: Ministry of Science and ICT grantid: NRF-2019M3E6A1064197 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4765-19e1467e21ae1cdc02b2f3cb9a75d8740eea62549665dccd698d4fb8d71f54783 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 00:03:26 EDT 2025 Fri Jul 25 03:15:35 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Wed Oct 01 03:13:44 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:35:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | mesoporous silica nanoparticles nanomaterials metal shielding surface modification |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4765-19e1467e21ae1cdc02b2f3cb9a75d8740eea62549665dccd698d4fb8d71f54783 |
Notes | This article is dedicated to Dr. Victor S.‐Y. Lin, who was a professor of chemistry at Iowa State University from 1999 until he unexpectedly passed away in 2010. Victor was a pioneer in the synthesis and applications of mesoporous silica nanoparticles (MSNs), a term he created to describe nanometer‐sized mesoporous silica materials with well‐defined and controllable properties in the biomedical and catalytic applications. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7854-927X |
PMID | 32319133 |
PQID | 2411063211 |
PQPubID | 2045203 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2393574127 proquest_journals_2411063211 pubmed_primary_32319133 crossref_primary_10_1002_adma_201907035 crossref_citationtrail_10_1002_adma_201907035 wiley_primary_10_1002_adma_201907035_ADMA201907035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2011; 358 2017; 6 2017; 7 2013; 25 2017; 3 2019; 55 2016; 229 2017; 46 2008; 9 2014; 26 1999; 121 2016; 100 2008; 8 2014; 24 2001; 49 2008; 2 1999; 402 2017; 9 2014; 136 2018; 9 2014; 2 2015; 137 2008; 29 2015; 44 2013; 52 1992; 359 2019; 29 2007; 7 2018; 30 2017; 240 2012; 25 2012; 24 2008; 60 2010; 6 2015; 2 2014; 238 2007; 129 2015; 5 2019; 6 2015; 4 2018; 140 2013; 49 2015; 3 2020; 383 2015; 95 2013; 46 2015; 51 2013; 42 2015; 11 2015; 54 2009; 131 2016; 91 2013; 340 2011; 3 2015; 9 2012; 148 2011; 5 2015; 7 2012; 33 2005; 44 2011; 133 2017; 259 2017; 139 2018; 25 2016; 11 1990; 63 2015; 25 2015; 69 2015; 27 2010; 46 2006; 45 2015; 60 2004; 16 2013; 34 2017; 12 2015; 21 2010; 132 2011; 44 2014; 35 2016; 138 2009; 5 2009; 4 2011; 47 2012; 48 2016; 28 2018; 10 2019; 370 2016; 8 2012; 41 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 5949 year: 2015 publication-title: Small – volume: 4 start-page: 6064 year: 2015 publication-title: Sci. Rep. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 5746 year: 2015 publication-title: J. Mater. Chem. B – volume: 370 start-page: 1188 year: 2019 publication-title: Chem. Eng. J. – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 29 start-page: 4045 year: 2008 publication-title: Biomaterials – volume: 25 start-page: 293 year: 2018 publication-title: Drug Delivery – volume: 2 start-page: 428 year: 2014 publication-title: J. Mater. Chem. B – volume: 402 start-page: 867 year: 1999 publication-title: Nature – volume: 44 start-page: 893 year: 2011 publication-title: Acc. Chem. Res. – volume: 3 start-page: 6480 year: 2015 publication-title: J. Mater. Chem. B – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 7214 year: 2014 publication-title: Chem. Mater. – volume: 26 start-page: 4947 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 165 year: 2009 publication-title: Nano Today – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 44 start-page: 3474 year: 2015 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 6024 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 1735 year: 2015 publication-title: ChemElectroChem – volume: 132 start-page: 1500 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 405 year: 2015 publication-title: Catal. Sci. Technol. – volume: 95 start-page: 40 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 52 start-page: 5580 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 1462 year: 2012 publication-title: Chem. Mater. – volume: 24 start-page: 2450 year: 2014 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 3650 year: 2014 publication-title: Biomaterials – volume: 69 start-page: 212 year: 2015 publication-title: Biomaterials – volume: 33 start-page: 989 year: 2012 publication-title: Biomaterials – volume: 91 start-page: 90 year: 2016 publication-title: Biomaterials – volume: 340 start-page: 337 year: 2013 publication-title: Science – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 229 start-page: 183 year: 2016 publication-title: J. Controlled Release – volume: 47 year: 2011 publication-title: Chem. Commun. – volume: 9 start-page: 53 year: 2008 publication-title: ChemBioChem – volume: 47 start-page: 9972 year: 2011 publication-title: Chem. Commun. – volume: 45 start-page: 2434 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 5340 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2123 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 3454 year: 2012 publication-title: Chem. Commun. – volume: 238 start-page: 198 year: 2014 publication-title: Chem. Eng. J. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1385 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 3740 year: 2013 publication-title: Chem. Soc. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 100 start-page: 118 year: 2016 publication-title: Biomaterials – volume: 25 start-page: 2265 year: 2012 publication-title: Chem. Res. Toxicol. – volume: 6 start-page: 1794 year: 2010 publication-title: Small – volume: 21 start-page: 331 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 139 start-page: 3978 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 1278 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 1391 year: 2013 publication-title: Biomaterials – volume: 7 start-page: 8003 year: 2015 publication-title: Nanoscale – volume: 42 start-page: 3862 year: 2013 publication-title: Chem. Soc. Rev. – volume: 359 start-page: 710 year: 1992 publication-title: Nature – volume: 358 start-page: 354 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 60 start-page: 62 year: 2015 publication-title: Biomaterials – volume: 9 year: 2015 publication-title: ACS Nano – volume: 27 start-page: 576 year: 2015 publication-title: Adv. Mater. – volume: 259 start-page: 187 year: 2017 publication-title: J. Controlled Release – volume: 25 start-page: 957 year: 2015 publication-title: Adv. Funct. Mater. – volume: 240 start-page: 9 year: 2017 publication-title: Microporous Mesoporous Mater. – volume: 26 start-page: 6174 year: 2014 publication-title: Adv. Mater. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 148 start-page: 53 year: 2012 publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 369 year: 2008 publication-title: Nano Lett. – volume: 7 start-page: 3576 year: 2007 publication-title: Nano Lett. – volume: 137 start-page: 4976 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 4834 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 2646 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5390 year: 2011 publication-title: ACS Nano – volume: 9 start-page: 4551 year: 2018 publication-title: Nat. Commun. – volume: 131 start-page: 6833 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 9611 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4303 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 9782 year: 2013 publication-title: Chem. Commun. – volume: 57 start-page: 6049 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 8411 year: 2017 publication-title: Int. J. Nanomed. – volume: 25 start-page: 3144 year: 2013 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 3 start-page: 2431 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 129 start-page: 1690 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 3211 year: 2015 publication-title: Chem. Commun. – volume: 55 start-page: 2731 year: 2019 publication-title: Chem. Commun. – volume: 133 start-page: 8102 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 4168 year: 2018 publication-title: Chem. Mater. – volume: 16 start-page: 1845 year: 2004 publication-title: Adv. Mater. – volume: 63 start-page: 988 year: 1990 publication-title: Bull. Chem. Soc. Jpn. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2199 year: 2018 publication-title: Nanoscale – volume: 8 start-page: 2011 year: 2016 publication-title: Nanoscale – volume: 28 start-page: 1963 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 889 year: 2008 publication-title: ACS Nano – volume: 5 start-page: 4131 year: 2011 publication-title: ACS Nano – volume: 46 start-page: 6524 year: 2010 publication-title: Chem. Commun. – volume: 7 start-page: 162 year: 2017 publication-title: Nanomaterials – volume: 8 start-page: 4007 year: 2016 publication-title: Nanoscale – volume: 5 start-page: 1408 year: 2009 publication-title: Small – volume: 11 start-page: 6591 year: 2016 publication-title: Int. J. Nanomed. – volume: 7 start-page: 6211 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 435 year: 2014 publication-title: Chem. Mater. – volume: 44 start-page: 288 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 6492 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 2590 year: 2012 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 1339 year: 2017 publication-title: J. Mater. Chem. B – volume: 3 start-page: 2801 year: 2011 publication-title: Nanoscale – volume: 129 start-page: 8845 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 391 year: 2016 publication-title: Nanomedicine – volume: 49 start-page: 65 year: 2001 publication-title: Microporous Mesoporous Mater. – volume: 27 start-page: 145 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 9788 year: 2011 publication-title: ACS Nano – volume: 60 start-page: 1278 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 132 start-page: 60 year: 2010 publication-title: Microporous Mesoporous Mater. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 46 start-page: 792 year: 2013 publication-title: Acc. Chem. Res. – ident: e_1_2_9_77_1 doi: 10.1039/C5NR06246B – ident: e_1_2_9_18_1 doi: 10.1021/jacs.5b02700 – ident: e_1_2_9_41_1 doi: 10.1021/acsnano.5b04378 – ident: e_1_2_9_51_1 doi: 10.1021/acsami.7b18577 – ident: e_1_2_9_86_1 doi: 10.1039/C4CY00996G – ident: e_1_2_9_89_1 doi: 10.1039/C7NR07875G – ident: e_1_2_9_12_1 doi: 10.1246/bcsj.63.988 – ident: e_1_2_9_8_1 doi: 10.1002/adfm.201902652 – ident: e_1_2_9_55_1 doi: 10.1016/j.micromeso.2016.11.002 – ident: e_1_2_9_44_1 doi: 10.1021/acsami.5b05893 – ident: e_1_2_9_112_1 doi: 10.1021/nn200365a – ident: e_1_2_9_116_1 doi: 10.1002/cbic.200700509 – ident: e_1_2_9_92_1 doi: 10.1002/adfm.201302988 – ident: e_1_2_9_13_1 doi: 10.1016/j.nantod.2009.02.001 – ident: e_1_2_9_34_1 doi: 10.1016/j.jconrel.2016.03.030 – ident: e_1_2_9_19_1 doi: 10.1002/advs.201901690 – ident: e_1_2_9_62_1 doi: 10.1021/ja810011p – ident: e_1_2_9_85_1 doi: 10.1039/c0cc01786h – ident: e_1_2_9_59_1 doi: 10.1021/acsami.5b00368 – ident: e_1_2_9_63_1 doi: 10.1002/smll.201000538 – ident: e_1_2_9_26_1 doi: 10.1002/smll.200900005 – ident: e_1_2_9_11_1 doi: 10.1038/359710a0 – ident: e_1_2_9_70_1 doi: 10.1021/cm5040276 – ident: e_1_2_9_54_1 doi: 10.1039/c1cc16004d – ident: e_1_2_9_48_1 doi: 10.1002/adma.201801198 – ident: e_1_2_9_96_1 doi: 10.1038/s41467-018-06730-z – ident: e_1_2_9_5_1 doi: 10.1021/cm402592t – ident: e_1_2_9_97_1 doi: 10.1002/adma.201404226 – ident: e_1_2_9_102_1 doi: 10.1002/celc.201500244 – ident: e_1_2_9_29_1 doi: 10.1016/j.cej.2019.123138 – ident: e_1_2_9_115_1 doi: 10.1016/j.jconrel.2016.11.032 – ident: e_1_2_9_84_1 doi: 10.1039/C5TB00634A – ident: e_1_2_9_105_1 doi: 10.1126/science.1231391 – ident: e_1_2_9_67_1 doi: 10.1021/ja9916658 – ident: e_1_2_9_82_1 doi: 10.1016/j.jcis.2011.03.004 – ident: e_1_2_9_69_1 doi: 10.1002/anie.201505538 – ident: e_1_2_9_110_1 doi: 10.1021/tx300166u – ident: e_1_2_9_98_1 doi: 10.1016/j.biomaterials.2016.05.030 – ident: e_1_2_9_30_1 doi: 10.1039/C8CC09389J – ident: e_1_2_9_103_1 doi: 10.1021/acsami.5b11310 – ident: e_1_2_9_88_1 doi: 10.3390/nano7070162 – ident: e_1_2_9_87_1 doi: 10.1002/adma.200400349 – ident: e_1_2_9_73_1 doi: 10.1016/j.cej.2019.03.272 – ident: e_1_2_9_106_1 doi: 10.1002/smll.201501449 – ident: e_1_2_9_20_1 doi: 10.1002/anie.200503253 – ident: e_1_2_9_35_1 doi: 10.1039/c3cc45967e – ident: e_1_2_9_42_1 doi: 10.1039/C3TB21268H – ident: e_1_2_9_1_1 doi: 10.1016/j.addr.2015.09.009 – ident: e_1_2_9_81_1 doi: 10.1021/acsami.6b13876 – ident: e_1_2_9_17_1 doi: 10.1021/ar3000986 – ident: e_1_2_9_64_1 doi: 10.1016/j.biomaterials.2016.03.019 – ident: e_1_2_9_83_1 doi: 10.1039/c2cc30411b – ident: e_1_2_9_2_1 doi: 10.1039/c1cs15246g – ident: e_1_2_9_21_1 doi: 10.1039/c1cc11760b – ident: e_1_2_9_9_1 doi: 10.1039/c1nr10224a – ident: e_1_2_9_71_1 doi: 10.1016/j.micromeso.2011.07.014 – ident: e_1_2_9_27_1 doi: 10.1021/nn200809t – ident: e_1_2_9_75_1 doi: 10.1039/C5RA16023E – ident: e_1_2_9_50_1 doi: 10.1021/acsami.6b11324 – ident: e_1_2_9_22_1 doi: 10.1021/ja1070653 – ident: e_1_2_9_68_1 doi: 10.1002/chem.201403393 – ident: e_1_2_9_109_1 doi: 10.1016/j.addr.2008.03.012 – ident: e_1_2_9_61_1 doi: 10.1021/ja110094g – ident: e_1_2_9_93_1 doi: 10.1080/10717544.2018.1425779 – ident: e_1_2_9_40_1 doi: 10.2147/IJN.S148438 – ident: e_1_2_9_4_1 doi: 10.1039/C6TB03066A – ident: e_1_2_9_91_1 doi: 10.1016/j.biomaterials.2015.04.053 – ident: e_1_2_9_65_1 doi: 10.1002/adma.201401931 – ident: e_1_2_9_108_1 doi: 10.1021/ar2000259 – ident: e_1_2_9_90_1 doi: 10.1021/nl0727415 – ident: e_1_2_9_53_1 doi: 10.1002/anie.201300958 – ident: e_1_2_9_111_1 doi: 10.1021/nn800072t – ident: e_1_2_9_15_1 doi: 10.1039/C2CS35297D – ident: e_1_2_9_24_1 doi: 10.1021/cm3001688 – ident: e_1_2_9_10_1 doi: 10.2217/nnm.15.212 – ident: e_1_2_9_14_1 doi: 10.1002/anie.200460892 – ident: e_1_2_9_37_1 doi: 10.2147/IJN.S120611 – ident: e_1_2_9_118_1 doi: 10.1039/C5NR08560H – ident: e_1_2_9_113_1 doi: 10.1002/adhm.201700720 – ident: e_1_2_9_60_1 doi: 10.1016/j.biomaterials.2015.08.021 – ident: e_1_2_9_76_1 doi: 10.1021/ja067379v – ident: e_1_2_9_7_1 doi: 10.1039/C7CS00219J – ident: e_1_2_9_117_1 doi: 10.1016/j.micromeso.2009.11.015 – ident: e_1_2_9_28_1 doi: 10.1021/ja910846q – ident: e_1_2_9_80_1 doi: 10.1021/nn2033105 – ident: e_1_2_9_46_1 doi: 10.1002/anie.201806759 – ident: e_1_2_9_33_1 doi: 10.1038/srep06064 – ident: e_1_2_9_78_1 doi: 10.1002/adma.201505524 – ident: e_1_2_9_58_1 doi: 10.1021/ja907838s – ident: e_1_2_9_95_1 doi: 10.1016/j.biomaterials.2008.07.007 – ident: e_1_2_9_52_1 doi: 10.1021/jacs.7b01118 – ident: e_1_2_9_38_1 doi: 10.1039/C5NR05649G – ident: e_1_2_9_16_1 doi: 10.1016/j.cej.2013.06.032 – ident: e_1_2_9_104_1 doi: 10.1039/C4CC10064F – ident: e_1_2_9_32_1 doi: 10.1021/ja206998x – ident: e_1_2_9_3_1 doi: 10.1002/adma.201205292 – ident: e_1_2_9_100_1 doi: 10.1021/ja508733r – ident: e_1_2_9_114_1 doi: 10.1021/ja201779d – ident: e_1_2_9_107_1 doi: 10.1021/jacs.7b10694 – ident: e_1_2_9_23_1 doi: 10.1021/acs.chemmater.8b01873 – ident: e_1_2_9_56_1 doi: 10.1002/adma.201401124 – ident: e_1_2_9_119_1 doi: 10.1039/C5NR01050K – ident: e_1_2_9_49_1 doi: 10.1021/ja0719780 – ident: e_1_2_9_57_1 doi: 10.1016/j.biomaterials.2011.10.017 – ident: e_1_2_9_79_1 doi: 10.1002/adma.201400815 – ident: e_1_2_9_39_1 doi: 10.1016/j.biomaterials.2014.01.013 – ident: e_1_2_9_74_1 doi: 10.1021/acsbiomaterials.7b00569 – ident: e_1_2_9_31_1 doi: 10.1002/adfm.201404629 – ident: e_1_2_9_66_1 doi: 10.1038/47229 – ident: e_1_2_9_99_1 doi: 10.1021/jacs.6b00902 – ident: e_1_2_9_101_1 doi: 10.1021/acsami.7b06906 – ident: e_1_2_9_43_1 doi: 10.1002/adfm.201402755 – ident: e_1_2_9_94_1 doi: 10.1021/nl0714785 – ident: e_1_2_9_25_1 doi: 10.1039/C5CS00243E – ident: e_1_2_9_45_1 doi: 10.1016/j.biomaterials.2012.10.072 – ident: e_1_2_9_6_1 doi: 10.1039/c3cs35405a – ident: e_1_2_9_36_1 doi: 10.1039/C5TB00304K – ident: e_1_2_9_47_1 doi: 10.1002/anie.201712996 – ident: e_1_2_9_72_1 doi: 10.1016/S1387-1811(01)00404-8 |
SSID | ssj0009606 |
Score | 2.713284 |
SecondaryResourceType | review_article |
Snippet | Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1907035 |
SubjectTerms | Animals Assemblies Biocompatibility Biocompatible Materials - chemistry Biomedical materials Diagnostic systems Humans Materials science mesoporous silica nanoparticles metal shielding Morphology nanomaterials Nanoparticles Porosity Porous materials Silicon dioxide Silicon Dioxide - chemistry surface modification Tissue engineering |
Title | Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201907035 https://www.ncbi.nlm.nih.gov/pubmed/32319133 https://www.proquest.com/docview/2411063211 https://www.proquest.com/docview/2393574127 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6jZt-jiuLxZhPfgAwUNJ8wBR2sV1L_56Z9Jtd1cRQW8NTdI0mcl8M0m-ABwFIb4pZIbILUIHxVjrZyaxfpCmJuqgBY8TOu_cv4l7D9H1o3icOsVf80O0ATfSDDdfk4LLYng6IQ2V2vEGoUFDoaVT5kEo3Drt7YQ_iuC5I9sLhZ_FUdqwNnb46WzxWav0DWrOIldneq6WQTaNrnecvJyM3osT9fGFz_E_f7UCS2Ncyrq1IK3CnCnXYHGKrXAdnnAmrqYXHjS7c-yz-MhkianRm5XKsLPnisxlHWVElM8qy_pmWCHUr0ZDdvdMgUJGtQ2afXkb8HB1eX_e88d3M_gqSmLhB5mhOdbwQJpAadXhBbehKjKZCE3X_BkjY3I-41hopXScpTqyRaqTwBKFWLgJ82VVmm1gmVJKqFR0pFZRkEjMSJzyWI9IeGgLD_xmbHI1Ji6n-zNe85pymefUaXnbaR4ct_kHNWXHjzn3mqHOx6o7zBHSoJscomPswWH7GpWOVlJkabCjcscbh8LNEw-2ahFpPxUiYs7Q8_eAu4H-pQ1596LfbVM7fym0CwucogAuNrQH8zj0Zh-h0ntx4NThEzsZCq0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOBQOQFse4VVXqsQpsHHiPI4LFG1blkMBqVIPluOHhEAJYtkLv54ZZxNYUFUJbrFiO4494_lmbH8G-BbF-KZUBSK3BB0U61xY2MyFUZ7bpIcWPM3ovPPwLB1cJj__iHY3IZ2FafghuoAbaYafr0nBKSB98MQaqownDkKLhlIrZmGeFulIN49_PzFIEUD3dHuxCIs0yVvexh4_mC4_bZdegc1p7OqNz8kylG2zmz0n1_vj-3JfP7xgdHzXf63A0gSasn4jSx9hxlafYPEZYeFn-IuTcf187cGwc09Ai49MVZga3zmlLTu8qsliNoFGBPqsdmxoRzWi_Xo8YudXFCtkVNttuzVvFS5Pvl8cDcLJ9QyhTrJUhFFhaZq1PFI20kb3eMldrMtCZcLQTX_WqpT8zzQVRmuTFrlJXJmbLHLEIhavwVxVV3YDWKG1FjoXPWV0EmUKMxKtPNYjMh67MoCwHRypJ9zldIXGjWxYl7mkTpNdpwWw1-W_bVg7_plzux1rOdHekURUg55yjL5xAF-716h3tJiiKosdJT11HMo3zwJYb2Sk-1SMoLlA5z8A7kf6P22Q_eNhv0ttvqXQF_gwuBieytMfZ7-2YIFTUMCHirZhDsXA7iByui93vW48AuceDsk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKrKofRJ01JwJaSeAhsndpLjAl0B7SIERULqwXL8kFCrZNVlL_x6ZpxN2AVVldpbrNiOY894vhnbnwG2kxTfVLpE5Jahg-K8j0uX-zgpCpcN0ILLnM47j0_k4UV2fCkuF07xt_wQfcCNNCPM16TgE-t370hDtQ28QWjQUGjFY3iSSXSxCBad3RFIET4PbHupiEuZFR1t44DvLpdfNksPsOYydA22Z7QGumt1u-Xk587sutoxN_cIHf_nt17A8zkwZcNWkl7CI1e_gtUFusLX8AOn4mZx5cGy80A_i49M15ia_fbaOLZ31ZC9bMOMCPNZ49nYTRvE-s1sys6vKFLIqLZJtzHvDVyMvnzfP4znlzPEJsuliJPS0STreKJdYqwZ8Ir71FSlzoWle_6c05K8TymFNcbKsrCZrwqbJ544xNK3sFI3tXsHrDTGCFOIgbYmS3KNGYlUHusROU99FUHcjY0yc-ZyukDjl2o5l7miTlN9p0Xwuc8_aTk7_phzoxtqNdfdqUJMg35yip5xBJ_616h1tJSia4cdpQJxHEo3zyNYb0Wk_1SKkLlE1z8CHgb6L21Qw4PxsE-9_5dCW_D09GCkvh2dfP0AzzhFBEKcaANWUArcR4RN19Vm0IxbqRANeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoarchitectured+Structure+and+Surface+Biofunctionality+of+Mesoporous+Silica+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kankala%2C+Ranjith+Kumar&rft.au=Han%2C+Ya-Hui&rft.au=Na%2C+Jongbeom&rft.au=Lee%2C+Chia-Hung&rft.date=2020-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft.spage=e1907035&rft_id=info:doi/10.1002%2Fadma.201907035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |