PPGCN: Phase-Aligned Periodic Graph Convolutional Network for Dual-Task-Based Cognitive Impairment Detection
Early detection methods for cognitive impairment are crucial for its effective treatment. Dual-task-based pipelines that rely on skeleton sequences can detect cognitive impairment reliably. Although such pipelines achieve state-of-the-art results by analyzing skeleton sequences of periodic stepping...
Saved in:
| Published in | IEEE access Vol. 12; pp. 37679 - 37691 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3371517 |
Cover
| Summary: | Early detection methods for cognitive impairment are crucial for its effective treatment. Dual-task-based pipelines that rely on skeleton sequences can detect cognitive impairment reliably. Although such pipelines achieve state-of-the-art results by analyzing skeleton sequences of periodic stepping motion, we propose that their performance can be improved by decomposing the skeleton sequence into representative phase-aligned periods and focusing on them instead of the entire sequence. We present the phase-aligned periodic graph convolutional network, which is capable of processing phase-aligned periodic skeleton sequences. We trained it with a cross-modality feature fusion loss using a representative dataset of 392 samples annotated by medical professionals. As part of a dual-task cognitive impairment detection pipeline that relies on two-dimensional skeleton sequences extracted from RGB images to improve its general usability, our proposed method outperformed existing approaches and achieved a mean sensitivity of 0.9231 and specificity of 0.9398 in a four-fold cross-validation setup. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2024.3371517 |