Physically Consistent Whole-Body Kinematics Assessment Based on an RGB-D Sensor. Application to Simple Rehabilitation Exercises

This work proposes to improve the accuracy of joint angle estimates obtained from an RGB-D sensor. It is based on a constrained extended Kalman Filter that tracks inputted measured joint centers. Since the proposed approach uses a biomechanical model, it allows physically consistent constrained join...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 10; p. 2848
Main Authors Colombel, Jessica, Bonnet, Vincent, Daney, David, Dumas, Raphael, Seilles, Antoine, Charpillet, François
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 17.05.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20102848

Cover

More Information
Summary:This work proposes to improve the accuracy of joint angle estimates obtained from an RGB-D sensor. It is based on a constrained extended Kalman Filter that tracks inputted measured joint centers. Since the proposed approach uses a biomechanical model, it allows physically consistent constrained joint angles and constant segment lengths to be obtained. A practical method that is not sensor-specific for the optimal tuning of the extended Kalman filter covariance matrices is provided. It uses reference data obtained from a stereophotogrammetric system but it has to be tuned only once since it is task-specific only. The improvement of the optimal tuning over classical methods in setting the covariance matrices is shown with a statistical parametric mapping analysis. The proposed approach was tested with six healthy subjects who performed four rehabilitation tasks. The accuracy of joint angle estimates was assessed with a reference stereophotogrammetric system. Even if some joint angles, such as the internal/external rotations, were not well estimated, the proposed optimized algorithm reached a satisfactory average root mean square difference of 9.7 ∘ and a correlation coefficient of 0.8 for all joints. Our results show that an affordable RGB-D sensor can be used for simple in-home rehabilitation when using a constrained biomechanical model.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20102848