Subduction/obduction rate in the North Pacific diagnosed by an eddy-resolving model
Ventilation in the North Pacifi c is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model(HYCOM) and Quik SCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction...
Saved in:
| Published in | Chinese journal of oceanology and limnology Vol. 34; no. 4; pp. 835 - 846 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Science Press
01.07.2016
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4059 2096-5508 1993-5005 2523-3521 |
| DOI | 10.1007/s00343-016-5036-y |
Cover
| Summary: | Ventilation in the North Pacifi c is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model(HYCOM) and Quik SCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy fi eld can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy fi eld, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction. |
|---|---|
| Bibliography: | 37-1150 subduction;obduction;eddy-resolved;high frequency;North Pacific Ventilation in the North Pacifi c is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model(HYCOM) and Quik SCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy fi eld can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy fi eld, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
| DOI: | 10.1007/s00343-016-5036-y |