Online Handwriting-Based Gender Recognition Using Statistical and Machine Learning Approaches

The classification of gender from handwriting is a challenging issue that have great attention recently. Most of the exiting works were conducted on gender classification using face image and offline handwritten texts. This study explored an automated system for gender classification from online han...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 93791 - 93801
Main Authors Shin, Jungpil, Uchida, Yuta, Maniruzzaman, Md, Hirooka, Koki, Megumi, Akiko, Yasumura, Akira
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3424453

Cover

More Information
Summary:The classification of gender from handwriting is a challenging issue that have great attention recently. Most of the exiting works were conducted on gender classification using face image and offline handwritten texts. This study explored an automated system for gender classification from online handwritten patterns. The handwritten samples were collected from 79 (Male: 32 and Female: 47) using pen tablet device. Each subject was asked to perform four tasks such as Zigzag trace (ZigZ-T), Zigzag predict (ZigZ-P), periodic line trace (PL-T), and periodic line predict (PL-P) and repeated its into three times. Thirty-six statistical features were derived from the six raw features, obtained from the Pen tablet device. Following that, we selected the best subset of features by employing Sequential Forward Floating Selection (SFFS)-based algorithm. At the same time, four machine learning (ML)-based algorithms like support vector machine (SVM), random forest, AdaBoost, and Gradient Boosting (GB) were employed for gender classification. We trained these four ML-based algorithms with leave-one-out method and optimized their hyperparameters using Optuna. The experimental results showed that SVM achieved a recognition accuracy of 88.10% for adult ZigZ-T tasks and 90.09% recognition accuracy was obtained by GB-based algorithm for children whose drawing ZigZ-P tasks. our proposed system demonstrates promise in automating gender classification based on handwriting patterns, offering insights into the significant differences between adult and child handwriting. The ability to identify gender accurately from handwriting has broad applications, including security enhancements and personalized service provision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3424453