Towards human distance estimation using a thermal sensor array
Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. P...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 35; no. 32; pp. 23357 - 23367 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.11.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058 1433-3058  | 
| DOI | 10.1007/s00521-021-06193-2 | 
Cover
| Abstract | Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of
±
0.2
 m in continuous-based estimation and
96.8
%
achieved-accuracy in discrete distance estimation. | 
    
|---|---|
| AbstractList | Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people's privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of ± 0.2 m in continuous-based estimation and 96.8 % achieved-accuracy in discrete distance estimation.Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people's privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of ± 0.2 m in continuous-based estimation and 96.8 % achieved-accuracy in discrete distance estimation. Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of ±0.2 m in continuous-based estimation and 96.8% achieved-accuracy in discrete distance estimation. Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of $$\pm 0.2$$ ± 0.2 m in continuous-based estimation and $$96.8\%$$ 96.8 % achieved-accuracy in discrete distance estimation. Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of $$\pm 0.2$$ ±0.2 m in continuous-based estimation and $$96.8\%$$ 96.8% achieved-accuracy in discrete distance estimation. Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people's privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of m in continuous-based estimation and achieved-accuracy in discrete distance estimation. Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of ± 0.2 m in continuous-based estimation and 96.8 % achieved-accuracy in discrete distance estimation.  | 
    
| Author | Zhong, Joni Naser, Abdallah Lotfi, Ahmad  | 
    
| Author_xml | – sequence: 1 givenname: Abdallah orcidid: 0000-0001-5969-1756 surname: Naser fullname: Naser, Abdallah email: abdallah.naser@ntu.ac.uk organization: Nottingham Trent University – sequence: 2 givenname: Ahmad surname: Lotfi fullname: Lotfi, Ahmad organization: Nottingham Trent University – sequence: 3 givenname: Joni surname: Zhong fullname: Zhong, Joni organization: The Hong Kong Polytechnic University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34149190$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUFv1DAQhS1URLctf4ADisSFS2BsTxL7UglVQCtV6qU9W5PE2U2V2IudUO2_x2EXCj1UPYx8mPeenr85YUfOO8vYOw6fOED1OQIUguewTMm1zMUrtuIoZS6hUEdsBRqXFcpjdhLjPQBgqYo37FgiR801rNj5rX-g0MZsM4_ksraPE7nGZjZO_UhT7102x96tM8qmjQ0jDVm0LvqQUQi0O2OvOxqifXt4T9ndt6-3F5f59c33q4sv13mDFU5509UEqLrUUlndCl1iVVWAXYOkkUrdtLqwvCtEp4SqibdoqxqhqsmC7Gp5yuQ-d3Zb2j3QMJhtSAXDznAwCw2zp2FgmYWGEcl1vndt53q0bWPdFOjR6ak3_29cvzFr_9MoAaiFSgEfDwHB_5gTEzP2sbHDQM76ORpRoKygQIQk_fBEeu_n4BIUI1SleFGU5aJ6_2-jv1X-HCQJ1F7QBB9jsJ1p-un3HVLBfnj-t-KJ9UWIDmBjEru1DY-1n3H9AvMQvuA | 
    
| CitedBy_id | crossref_primary_10_1109_JIOT_2022_3150566 crossref_primary_10_1007_s12652_024_04759_1 crossref_primary_10_1007_s10854_024_13934_1 crossref_primary_10_1109_ACCESS_2022_3229895 crossref_primary_10_1109_LSENS_2022_3155936 crossref_primary_10_1109_THMS_2022_3203021  | 
    
| Cites_doi | 10.1186/1687-6180-2012-99 10.1016/S0140-6736(14)60463-3 10.1109/JSEN.2018.2844252 10.1109/JIOT.2019.2915095 10.1109/TNNLS.2018.2876865 10.1177/1045389X18758183 10.1109/JSEN.2009.2039792 10.1016/j.infrared.2019.01.011 10.1007/s00138-013-0570-5 10.1016/j.cej.2015.03.117 10.3109/17483107.2014.961179 10.1007/s11042-018-7134-7 10.1109/ICSMC.2012.6378039 10.1109/LARS.2008.21 10.1109/ICSENS.2014.6985035 10.1109/FUZZ48607.2020.9177685 10.14236/ewic/HCI2018.143 10.1101/2020.06.10.20127589 10.1145/2528282.2528301 10.1109/JSEN.2020.2988070 10.1109/JSEN.2020.3020401 10.1109/ICIVC47709.2019.8980940 10.1109/WPNC.2010.5653529 10.1145/3389189.3397988 10.1145/2632048.2636084 10.1109/ICASSP.2019.8682998 10.1109/ICC.2015.7248370 10.1109/LCN.Workshops.2017.59 10.34218/IJEET.11.4.2020.023 10.1109/CCIE.2015.7399293 10.1007/978-3-319-24574-4_28  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 The Author(s) 2021. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s00521-021-06193-2 | 
    
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection CrossRef PubMed  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 23367 | 
    
| ExternalDocumentID | 10.1007/s00521-021-06193-2 PMC8204928 34149190 10_1007_s00521_021_06193_2  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-cfba048f6198e9d296477704fc4a94a69cd95e1f52f828ba1d4e7b407bae03fb3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0941-0643 1433-3058  | 
    
| IngestDate | Sun Oct 26 03:51:08 EDT 2025 Tue Sep 30 16:48:57 EDT 2025 Thu Sep 04 18:10:38 EDT 2025 Sat Jul 26 00:33:45 EDT 2025 Thu Apr 03 07:02:32 EDT 2025 Wed Oct 01 02:26:06 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Fri Feb 21 02:42:23 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 32 | 
    
| Keywords | Human-centred approach Artificial neural network Distance estimation Semantic segmentation Adaptive system Thermal sensor array  | 
    
| Language | English | 
    
| License | The Author(s) 2021. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-cfba048f6198e9d296477704fc4a94a69cd95e1f52f828ba1d4e7b407bae03fb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-5969-1756 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-021-06193-2.pdf | 
    
| PMID | 34149190 | 
    
| PQID | 2878155660 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00521_021_06193_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8204928 proquest_miscellaneous_2543705440 proquest_journals_2878155660 pubmed_primary_34149190 crossref_citationtrail_10_1007_s00521_021_06193_2 crossref_primary_10_1007_s00521_021_06193_2 springer_journals_10_1007_s00521_021_06193_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-01 | 
    
| PublicationDateYYYYMMDD | 2023-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationTitleAlternate | Neural Comput Appl | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | CR18 CR17 CR16 CR38 CR15 Zhao, Zheng, Xu St (CR39) 2019; 30 CR14 Sapna, Tamilarasi, Kumar (CR32) 2012; 2 CR36 CR13 CR35 CR12 Qu, Yang, Gu (CR30) 2019; 97 CR34 CR11 CR33 CR10 CR31 Chen, Wang (CR5) 2018; 29 Gade, Moeslund (CR8) 2014; 25 Zappi, Farella, Benini (CR37) 2010; 10 CR2 Dann (CR7) 2014; 383 CR4 CR3 Lu, Huang, Zheng (CR21) 2015; 274 CR28 CR27 CR26 Lee, Shah, Bhattacharya, Motai (CR19) 2012; 1 CR25 CR24 CR23 CR22 CR20 Gochoo, Tan, Huang, Batjargal, Hsieh, Alnajjar, Chen (CR9) 2019; 6 Peetoom, Lexis, Joore, Dirksen, De Witte (CR29) 2015; 10 Al-Khafajiy, Baker, Chalmers, Asim, Kolivand, Fahim, Waraich (CR1) 2019; 78 Chen, Wang, Liu (CR6) 2018; 18 R Gade (6193_CR8) 2014; 25 SJ Lee (6193_CR19) 2012; 1 P Zappi (6193_CR37) 2010; 10 6193_CR15 6193_CR14 6193_CR36 M Al-Khafajiy (6193_CR1) 2019; 78 6193_CR17 6193_CR16 6193_CR38 6193_CR11 6193_CR33 6193_CR10 6193_CR13 6193_CR35 6193_CR12 6193_CR34 6193_CR31 ZQ Zhao (6193_CR39) 2019; 30 Y Lu (6193_CR21) 2015; 274 S Sapna (6193_CR32) 2012; 2 D Qu (6193_CR30) 2019; 97 Z Chen (6193_CR5) 2018; 29 6193_CR18 M Gochoo (6193_CR9) 2019; 6 KK Peetoom (6193_CR29) 2015; 10 Z Chen (6193_CR6) 2018; 18 6193_CR26 6193_CR25 6193_CR28 6193_CR27 6193_CR4 6193_CR22 6193_CR3 T Dann (6193_CR7) 2014; 383 6193_CR2 6193_CR24 6193_CR23 6193_CR20  | 
    
| References_xml | – volume: 1 start-page: 99 year: 2012 ident: CR19 article-title: Human tracking with an infrared camera using a curve matching framework publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2012-99 – ident: CR22 – ident: CR18 – volume: 383 start-page: 927 year: 2014 ident: CR7 article-title: Global elderly care in crisis publication-title: The Lancet doi: 10.1016/S0140-6736(14)60463-3 – ident: CR4 – volume: 18 start-page: 6360 issue: 15 year: 2018 end-page: 6368 ident: CR6 article-title: Unobtrusive sensor-based occupancy facing direction detection and tracking using advanced machine learning algorithms publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2844252 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – ident: CR10 – ident: CR33 – volume: 6 start-page: 7192 issue: 4 year: 2019 end-page: 7200 ident: CR9 article-title: Novel iot-based privacy-preserving yoga posture recognition system using low-resolution infrared sensors and deep learning publication-title: IEEE Internet of Things J doi: 10.1109/JIOT.2019.2915095 – ident: CR35 – volume: 30 start-page: 3212 issue: 11 year: 2019 end-page: 3232 ident: CR39 article-title: Object detection with deep learning: a review publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – volume: 29 start-page: 2027 issue: 9 year: 2018 end-page: 2039 ident: CR5 article-title: Infrared-ultrasonic sensor fusion for support vector machine-based fall detection publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X18758183 – volume: 2 start-page: 393 year: 2012 end-page: 398 ident: CR32 article-title: Backpropagation learning algorithm based on Levenberg Marquardt algorithm publication-title: Comp Sci Inform Technol (CS and IT) – volume: 10 start-page: 1486 issue: 9 year: 2010 end-page: 1494 ident: CR37 article-title: Tracking motion direction and distance with pyroelectric IR sensors publication-title: IEEE Sens J doi: 10.1109/JSEN.2009.2039792 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 97 start-page: 349 year: 2019 end-page: 359 ident: CR30 article-title: Indoor multiple human targets localization and tracking using thermopile sensor publication-title: Infr Phys Technol doi: 10.1016/j.infrared.2019.01.011 – ident: CR3 – ident: CR15 – ident: CR38 – ident: CR17 – volume: 25 start-page: 245 issue: 1 year: 2014 end-page: 262 ident: CR8 article-title: Thermal cameras and applications: a survey publication-title: Mach Vis Appl doi: 10.1007/s00138-013-0570-5 – ident: CR31 – ident: CR13 – ident: CR11 – ident: CR34 – ident: CR36 – volume: 274 start-page: 123 year: 2015 end-page: 131 ident: CR21 article-title: A cfd-dem study of bubble dynamics in fluidized bed using flood fill method publication-title: Chem Eng J doi: 10.1016/j.cej.2015.03.117 – volume: 10 start-page: 271 issue: 4 year: 2015 end-page: 294 ident: CR29 article-title: Literature review on monitoring technologies and their outcomes in independently living elderly people publication-title: Disabil Rehabilit Assist Technol doi: 10.3109/17483107.2014.961179 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 78 start-page: 24681 issue: 17 year: 2019 end-page: 24706 ident: CR1 article-title: Remote health monitoring of elderly through wearable sensors publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7134-7 – ident: CR20 – volume: 2 start-page: 393 year: 2012 ident: 6193_CR32 publication-title: Comp Sci Inform Technol (CS and IT) – ident: 6193_CR18 doi: 10.1109/ICSMC.2012.6378039 – ident: 6193_CR13 doi: 10.1109/LARS.2008.21 – ident: 6193_CR33 doi: 10.1109/ICSENS.2014.6985035 – ident: 6193_CR25 doi: 10.1109/FUZZ48607.2020.9177685 – volume: 97 start-page: 349 year: 2019 ident: 6193_CR30 publication-title: Infr Phys Technol doi: 10.1016/j.infrared.2019.01.011 – ident: 6193_CR15 doi: 10.14236/ewic/HCI2018.143 – volume: 29 start-page: 2027 issue: 9 year: 2018 ident: 6193_CR5 publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X18758183 – ident: 6193_CR27 – ident: 6193_CR34 doi: 10.1101/2020.06.10.20127589 – ident: 6193_CR3 doi: 10.1145/2528282.2528301 – ident: 6193_CR11 – volume: 1 start-page: 99 year: 2012 ident: 6193_CR19 publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2012-99 – volume: 78 start-page: 24681 issue: 17 year: 2019 ident: 6193_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7134-7 – ident: 6193_CR20 doi: 10.1109/JSEN.2020.2988070 – ident: 6193_CR2 – volume: 274 start-page: 123 year: 2015 ident: 6193_CR21 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.03.117 – ident: 6193_CR24 doi: 10.1109/JSEN.2020.3020401 – ident: 6193_CR17 – ident: 6193_CR38 doi: 10.1109/ICIVC47709.2019.8980940 – volume: 25 start-page: 245 issue: 1 year: 2014 ident: 6193_CR8 publication-title: Mach Vis Appl doi: 10.1007/s00138-013-0570-5 – ident: 6193_CR36 – volume: 6 start-page: 7192 issue: 4 year: 2019 ident: 6193_CR9 publication-title: IEEE Internet of Things J doi: 10.1109/JIOT.2019.2915095 – ident: 6193_CR16 doi: 10.1109/WPNC.2010.5653529 – volume: 10 start-page: 1486 issue: 9 year: 2010 ident: 6193_CR37 publication-title: IEEE Sens J doi: 10.1109/JSEN.2009.2039792 – ident: 6193_CR26 doi: 10.1145/3389189.3397988 – ident: 6193_CR12 doi: 10.1145/2632048.2636084 – ident: 6193_CR4 doi: 10.1109/ICASSP.2019.8682998 – ident: 6193_CR22 doi: 10.1109/ICC.2015.7248370 – ident: 6193_CR28 – volume: 383 start-page: 927 year: 2014 ident: 6193_CR7 publication-title: The Lancet doi: 10.1016/S0140-6736(14)60463-3 – ident: 6193_CR35 doi: 10.1109/LCN.Workshops.2017.59 – ident: 6193_CR10 – ident: 6193_CR23 doi: 10.34218/IJEET.11.4.2020.023 – volume: 18 start-page: 6360 issue: 15 year: 2018 ident: 6193_CR6 publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2844252 – volume: 10 start-page: 271 issue: 4 year: 2015 ident: 6193_CR29 publication-title: Disabil Rehabilit Assist Technol doi: 10.3109/17483107.2014.961179 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 6193_CR39 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2876865 – ident: 6193_CR14 doi: 10.1109/CCIE.2015.7399293 – ident: 6193_CR31 doi: 10.1007/978-3-319-24574-4_28  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.391463 | 
    
| Snippet | Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 23357 | 
    
| SubjectTerms | Artificial Intelligence Artificial neural networks Cameras Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Field of view High resolution Image Processing and Computer Vision Indoor environments Probability and Statistics in Computer Science Sensor arrays Sensors Special issue on Human-in-the-loop Machine Learning and its Applications  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4UN6ElspI3KhF4jgPH2gFVauqEiuEWqm3yHZsQFqyyz6E-u-ZcR7tqtKqB19iJ_HYM_Y39jwAPiAILqVJLJfepVym2vNSGMVT6YSwrnTKkKPwt3F-dinPr7KrLRj3vjBkVtmviWGhrqeWzsg_IbIvce_L8_ho9pdT1ii6Xe1TaOgutUL9OYQYewDbgiJjjWD768n4-49bnpIhSSfqNGTvI9POjSY409EJKT6lglpFysX6VnUHf941oxzuUh_Dw1Uz09f_9GRya7s6fQpPOpzJvrSM8Qy2XPMcdvocDqwT6RdweBHsZhcsJOtjNcFJrGAUfKP1amRkGv-TaUZQ8Q9-c4Ga73TO9Hyur1_C5enJxfEZ73IqcCsLueTWG41C65FCnIdaBEfUIpbeSq2kzpWtVeYSnwmPupjRSS1dYVDrM9rFqTfpKxg108a9AVb4WOk8N75AGJLFRpUKF36EdDKxypRJBEk_fJXtAo5T3otJNYRKDkNexVRoyCsRwcfhnVkbbmNj671-VqpO9BbVDaNE8H6oRqGhmxDduOkK22QyLRCsSmzzup3E4XfYfakQJkVQrE3v0IACcq_XNL9_hcDciKakEmUEBz0j3HRrExUHA7Pcg-i3m4nehUcCcVjrLrkHo-V85d4hblqa_U4Y_gMsrhHo priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5ED-rB96O-iOBNA31MH7kIsriIoCcXvJWkm6iwdpfuLuK_d9KXrsqih54yTZuZTOYbMg-AMwLBCSov42h0wDGQhie-EjxA7fuZTrRQNlH47j666eHtY_hYl8mxuTDf7u9tsU8yMNwGEpDlEQGn43aJjFRUXsxGnS85kGX7TfJWLCUGdYLM73PMGqEfyPJngGR7S7oKy9N8JN_f5GDwxRB1N2CtRpDsqhL5JizofAvWm-4MrFbWbbh8KCNix6xsw8f6FijSALNlNap8RWaD3p-YZBYEvtKcY_JphwWTRSHfd6DXvX7o3PC6WwLPMMYJz4ySpI6GVkgc7vtlimnsoslQCpSRyPoi1J4JfUNelpJeH3WsyJ9TUruBUcEuLObDXO8Di40rZBQpExPACF0lEkFHOoE19DKhEs8Br2FfmtWlxG1Hi0HaFkEuWZ669rEsT30Hztt3RlUhjbnUR41U0lqpxik5dwnBnyhyHThth0kd7B2HzPVwSjQhBjHBUCSavUqI7efo91EQAHIgnhFvS2BLbc-O5C_PZcltwkko_MSBi2YjfP7WvFVctJvlD4s--N_sh7DiE-KqEiOPYHFSTPUxIaSJOilV4wNZxQQC priority: 102 providerName: Springer Nature  | 
    
| Title | Towards human distance estimation using a thermal sensor array | 
    
| URI | https://link.springer.com/article/10.1007/s00521-021-06193-2 https://www.ncbi.nlm.nih.gov/pubmed/34149190 https://www.proquest.com/docview/2878155660 https://www.proquest.com/docview/2543705440 https://pubmed.ncbi.nlm.nih.gov/PMC8204928 https://link.springer.com/content/pdf/10.1007/s00521-021-06193-2.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfggXEnMCoj8cayJbZz8QtSKe0mENWEVml7imzHBkRJqzYVGr-e49ygDE0gHpxI8Uniy3H8nficzwAvEASnXIXa59YwnzNp_ZQq4TNuKNUmNUK5QOH30_hkxt-eR-c78KaNham83dslyTqmwbE0FeXRMrdHXeCb-5uJZrBLaAEwH63D3O5CP44QkfegP5ueDi8qmj3uRGo_e86Yj-qdNrEzf37Q9vx0BXRe9Z3sFlBvwY1NsZSX3-R8_sscNdkD09audk35crgp1aH-_hvx4_9W_w7cbkAsGdZadxd2THEP9toNIkjzvbgPr84qp9w1qXYCJLnDqphBHLNHHTJJnN_9RyKJw6Ff8ZlrNKsXKyJXK3n5AGaT8dnoxG82bPA1T3jpa6skfhEslgk7OadVlGsScKu5FFzGQuciMqGNqEVDT8kw5yZRaFIqaQJmFXsIvWJRmMdAEhsIGcfKJohxokCJVOCsgniRh1qoNPQgbLsp0w2budtUY551PMxVI2WBS66RMurBy-6eZc3lca30ftv7WTOu1xnalykisDgOPHjeZeOIdMsssjCLDcpEnCWIhDnKPKqVpXsdFp8LxGAeJFtq1Ak4tu_tnOLzp4r1G6EaFzT14KDVj5_Fuq4WB51S_kWln_yb-FO4SRH01bGZ-9ArVxvzDEFaqQawm06OB9AfHl-8G-P59Xh6-gGvjuIRHmd0OGhG6Q-50TZZ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48H4EChgJTjQicSYPHwri0WpL2xVCW6m31E7sFmnJLvtQtX-O38bYebSrSisuPeQSO36O7W_i-WYA3hIIzlCFhY9GRz5G0vgZV8KPUHNe6EwLZYnCR_2kd4zfT-KTNfjbcmGsWWW7J7qNuhwV9h_5B0L2GZ19SRJ8Gv_xbdQoe7vahtCQTWiFcse5GGuIHQd6cUEq3HRn_xvN9zvO93YHX3t-E2XALzDFmV8YJUmMDWkS1LKSO2pmGqApUAqUiShKEevQxNyQdqJkWKJOFelBSuogMiqicm_BBkYoSPnb-LLb__HzCjPTBQUlHcraF2HU0HYcec_-kaW39qG6I58vH43X8O51s83u7vYObM6rsVxcyOHwyvG4dx_uNriWfa4F8QGs6eoh3GtjRrBmC3kEHwfOTnfKXHBAVlr4SgnMOvuoWZTMmuKfMcksNP1NZU5J0x5NmJxM5OIxHN_I6D6B9WpU6WfAUhMImSTKpAR74kCJTNBBQxASw0KoLPQgbIcvLxoH5zbOxjDvXDO7Ic8D-9ghz7kH77tvxrV7j5W5t9pZyZulPs0vBdODN10yLVJ78yIrPZpTnhijlMAxUp6n9SR21VHzURAs8yBdmt4ug3UAvpxS_Tp3jsAJvaHgmQfbrSBcNmtVL7Y7YfmPTj9f3enXsNkbHB3mh_v9gxdwmxMGrKmaW7A-m8z1S8JsM_WqWRgMTm96Lf4DvlRPlA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB0UDtDl0CRdlaVhgN5qwVpGCy8BAidGusTowQZ8E0iJbAu4smHLKPz3GWqLDRdGe9CJI4rbkG_EeTMAHwkExyjd1EatfBt9oe3Yk9z2UXleqmLFpSEK3w_DuzF-mQSTDRZ_6e3eXElWnAYTpSkvevNM91rim_mbSWawecgC8G3ahA-QTjeTw6Af9jeYkWVSTrJhjCT6NW3m73VsH007eHPXbbK9O30Bz1b5XKz_iOl043gaHMHLGley62ohHMMTlb-CwyZnA6tV-DVcjUo_2SUrk_OxzMBHKmAm2EbFYmTGFf4HE8xAw99U55Is3dmCicVCrN_AeHA76t_ZdQ4FO8UICzvVUpCSauohjXvmlcTTyEGdouAoQp5mPFCuDjxNtpcUboYqkmTlSaEcX0v_LXTyWa7eA4u0w0UYSh0R7AgcyWNOGz1BOHRTLmPXArcZviStA4ybPBfTpA2NXA554pjHDHniWfCpfWdehdfYK33WzEpSq9oyIZMvJlAUho4Fl20xKYm5-RC5mq1IJkA_InCKJPOumsT2c9R85ASLLIi2prcVMAG4t0vyXz_LQNyEnpB7sQXdZiE8NmtfL7rtYvmHTp_8X-0X8PT7zSD59nn49RSeewTJKubkGXSKxUqdE4Qq5IdSSx4AQSwPOA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UMozpSBX4kbdJvHk4UulCqgqJKoeulI5RbZjtxVLdrWbFSq_nnFesC2qQBxy8sTx2GP7m3jmM8BbAsE56shwdFZwFMrxPNaSC7RxbGxupfaJwp9P0uMxfjpPztfgQ58L00S790eSbU6DZ2mq6v1Z6faHxDf_N5PcYP-QByA4eYeluwfraUKIfATr45PTwy8NzR56kTbOHoXgZN55lzvz54pW96dboPN27ORwgPoQ7i-rmbr-riaT3_aoow2wvXZtaMrXvWWt98yPG8SP_6v-Y3jUgVh22FrdJqzZ6gls9BdEsG69eAoHZ01Q7oI1NwGy0mNVKmCe2aNNmWQ-7v6CKeZx6Deqc0Fu9XTO1Hyurp_B-Ojj2ftj3l3YwA1mWHPjtKIVwVGbaJDLuMlyzUJ0BpVElUpTysRGLokdOXpaRSXaTJNLqZUNhdPiOYyqaWVfAstcKFWaapcRxklCLXNJuwrhRYyM1HkUQNQPU2E6NnN_qcakGHiYm04qQv_4TiriAN4N78xaLo87pbf70S-6eb0oyL_MCYGlaRjAzlBMM9Ifs6jKTpckk6DICAkjybxojWX4HDUfJWGwALIVMxoEPNv3akl1ddmwfhNUQxnnAez29vGrWXdpsTsY5V8ovfVv4q_gQUygr83N3IZRPV_a1wTSav2mm4M_AfCIMH8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+human+distance+estimation+using+a+thermal+sensor+array&rft.jtitle=Neural+computing+%26+applications&rft.au=Naser%2C+Abdallah&rft.au=Lotfi%2C+Ahmad&rft.au=Zhong%2C+Joni&rft.date=2023-11-01&rft.issn=0941-0643&rft.spage=1&rft_id=info:doi/10.1007%2Fs00521-021-06193-2&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |