Towards human distance estimation using a thermal sensor array

Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. P...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 32; pp. 23357 - 23367
Main Authors Naser, Abdallah, Lotfi, Ahmad, Zhong, Joni
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-021-06193-2

Cover

More Information
Summary:Human distance estimation is essential in many vital applications, specifically, in human localisation-based systems, such as independent living for older adults applications, and making places safe through preventing the transmission of contagious diseases through social distancing alert systems. Previous approaches to estimate the distance between a reference sensing device and human subject relied on visual or high-resolution thermal cameras. However, regular visual cameras have serious concerns about people’s privacy in indoor environments, and high-resolution thermal cameras are costly. This paper proposes a novel approach to estimate the distance for indoor human-centred applications using a low-resolution thermal sensor array. The proposed system presents a discrete and adaptive sensor placement continuous distance estimators using classification techniques and artificial neural network, respectively. It also proposes a real-time distance-based field of view classification through a novel image-based feature. Besides, the paper proposes a transfer application to the proposed continuous distance estimator to measure human height. The proposed approach is evaluated in different indoor environments, sensor placements with different participants. This paper shows a median overall error of ± 0.2  m in continuous-based estimation and 96.8 % achieved-accuracy in discrete distance estimation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0941-0643
1433-3058
1433-3058
DOI:10.1007/s00521-021-06193-2