Visual simulators replicate vision with multifocal lenses

Adaptive optics (AO) visual simulators based on deformable mirrors, spatial light modulators or optotunable lenses are increasingly used to simulate vision through different multifocal lens designs. However, the correspondence of this simulation with that obtained through real intraocular lenses (IO...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 1539
Main Authors Vinas, Maria, Benedi-Garcia, Clara, Aissati, Sara, Pascual, Daniel, Akondi, Vyas, Dorronsoro, Carlos, Marcos, Susana
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.02.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-019-38673-w

Cover

More Information
Summary:Adaptive optics (AO) visual simulators based on deformable mirrors, spatial light modulators or optotunable lenses are increasingly used to simulate vision through different multifocal lens designs. However, the correspondence of this simulation with that obtained through real intraocular lenses (IOLs) tested on the same eyes has not been, to our knowledge, demonstrated. We compare through-focus (TF) optical and visual quality produced by real multifocal IOLs (M-IOLs) -bifocal refractive and trifocal diffractive- projected on the subiect’s eye with those same designs simulated with a spatial light modulator (SLM) or an optotunable lens working in temporal multiplexing mode (SimVis technology). Measurements were performed on 7 cyclopleged subjects using a custom-made multichannel 3-active-optical-elements polychromatic AO Visual Simulator in monochromatic light. The same system was used to demonstrate performance of the real IOLs, SLM and SimVis technology simulations on bench using double-pass imaging on an artificial eye. Results show a general good correspondence between the TF performance with the real and simulated M-IOLs, both optically (on bench) and visually (measured visual acuity in patients). We demonstrate that visual simulations in an AO environment capture to a large extent the individual optical and visual performance obtained with real M-IOLs, both in absolute values and in the shape of through-focus curves.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-38673-w