Training Feedforward Neural Network Using Enhanced Black Hole Algorithm: A Case Study on COVID-19 Related ACE2 Gene Expression Classification

The aim of this paper is twofold. First, black hole algorithm (BHA) is proposed as a new training algorithm for feedforward neural networks (FNNs), since most traditional and metaheuristic algorithms for training FNNs suffer from the problem of slow coverage and getting stuck at local optima. BHA pr...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering Vol. 46; no. 4; pp. 3807 - 3828
Main Authors Pashaei, Elham, Pashaei, Elnaz
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2193-567X
1319-8025
2191-4281
2191-4281
DOI10.1007/s13369-020-05217-8

Cover

More Information
Summary:The aim of this paper is twofold. First, black hole algorithm (BHA) is proposed as a new training algorithm for feedforward neural networks (FNNs), since most traditional and metaheuristic algorithms for training FNNs suffer from the problem of slow coverage and getting stuck at local optima. BHA provides a reliable alternative to address these drawbacks. Second, complementary learning components and Levy flight random walk are introduced into BHA to result in a novel optimization algorithm (BHACRW) for the purpose of improving the FNNs’ accuracy by finding optimal weights and biases. Four benchmark functions are first used to evaluate BHACRW’s performance in numerical optimization problems. Later, the classification performance of the suggested models, using BHA and BHACRW for training FNN, is evaluated against seven various benchmark datasets: iris, wine, blood, liver disorders, seeds, Statlog (Heart), balance scale. Experimental result demonstrates that the BHACRW performs better in terms of mean square error (MSE) and accuracy of training FNN, compared to standard BHA and eight well-known metaheuristic algorithms: whale optimization algorithm (WOA), biogeography-based optimizer (BBO), gravitational search algorithm (GSA), genetic algorithm (GA), cuckoo search (CS), multiverse optimizer (MVO), symbiotic organisms search (SOS), and particle swarm optimization (PSO). Moreover, we examined the classification performance of the suggested approach on the angiotensin-converting enzyme 2 (ACE2) gene expression as a coronavirus receptor, which has been overexpressed in human rhinovirus-infected nasal tissue. Results demonstrate that BHACRW-FNN achieves the highest accuracy on the dataset compared to other classifiers.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ISSN:2193-567X
1319-8025
2191-4281
2191-4281
DOI:10.1007/s13369-020-05217-8