Hybrid Path Planning Algorithm Based on Membrane Pseudo-Bacterial Potential Field for Autonomous Mobile Robots
A hybrid path planning algorithm based on membrane pseudo-bacterial potential field (MemPBPF) is proposed. Membrane-inspired algorithms can reach an evolutionary behavior based on biochemical processes to find the best parameters for generating a feasible and safe path. The proposed MemPBPF algorith...
        Saved in:
      
    
          | Published in | IEEE access Vol. 7; pp. 156787 - 156803 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2019.2949835 | 
Cover
| Summary: | A hybrid path planning algorithm based on membrane pseudo-bacterial potential field (MemPBPF) is proposed. Membrane-inspired algorithms can reach an evolutionary behavior based on biochemical processes to find the best parameters for generating a feasible and safe path. The proposed MemPBPF algorithm uses a combination of the structure and rules of membrane computing. In that sense, the proposed MemPBPF algorithm contains dynamic membranes that include a pseudo-bacterial genetic algorithm for evolving the required parameters in the artificial potential field method. This hybridization between membrane computing, the pseudo-bacterial genetic algorithm, and the artificial potential field method provides an outperforming path planning algorithm for autonomous mobile robots. Computer simulation results demonstrate the effectiveness of the proposed MemPBPF algorithm in terms of path length considering collision avoidance and smoothness. Comparisons with two different versions employing a different number of elementary membranes and with other artificial potential field based algorithms are presented. The proposed MemPBPF algorithm yields improved performance in terms of time execution by using a parallel implementation on a multi-core computer. Therefore, the MemPBPF algorithm achieves high performance yielding competitive results for autonomous mobile robot navigation in complex and real scenarios. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 2169-3536 2169-3536  | 
| DOI: | 10.1109/ACCESS.2019.2949835 |