Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model
Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). Materials and Methods The spatial distribution of the B‐field magnitude and gradient of a cylindrica...
Saved in:
Published in | Neuromodulation (Malden, Mass.) Vol. 21; no. 4; pp. 340 - 347 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1094-7159 1525-1403 1525-1403 |
DOI | 10.1111/ner.12699 |
Cover
Abstract | Objective
The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).
Materials and Methods
The spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified.
Results
Peak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3.
Significance
This is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. |
---|---|
AbstractList | The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).
The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified.
Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm
.
This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).OBJECTIVEThe objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified.MATERIALS AND METHODSThe spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified.Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 .RESULTSPeak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 .This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.SIGNIFICANCEThis is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). Materials and Methods The spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified. Results Peak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3. Significance This is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. ObjectiveThe objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).Materials and MethodsThe spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified.ResultsPeak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3.SignificanceThis is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. |
Author | Bernabei, John M. Goetz, Stefan M. Tharayil, Joseph J. Peterchev, Angel V. |
AuthorAffiliation | 5 School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA 2 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, US 4 School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 6 Department of Neurosurgery, Duke University, Durham, NC, US 3 Department of Electrical and Computer Engineering, Duke University, Durham, NC, US 1 Department of Biomedical Engineering, Duke University, Durham, NC, USA |
AuthorAffiliation_xml | – name: 4 School of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 5 School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA – name: 1 Department of Biomedical Engineering, Duke University, Durham, NC, USA – name: 6 Department of Neurosurgery, Duke University, Durham, NC, US – name: 2 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, US – name: 3 Department of Electrical and Computer Engineering, Duke University, Durham, NC, US |
Author_xml | – sequence: 1 givenname: Joseph J. orcidid: 0000-0002-2390-4104 surname: Tharayil fullname: Tharayil, Joseph J. organization: Duke University – sequence: 2 givenname: Stefan M. surname: Goetz fullname: Goetz, Stefan M. organization: Duke University – sequence: 3 givenname: John M. surname: Bernabei fullname: Bernabei, John M. organization: University of Pennsylvania – sequence: 4 givenname: Angel V. orcidid: 0000-0002-4385-065X surname: Peterchev fullname: Peterchev, Angel V. email: angel.peterchev@duke.edu organization: Duke University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29024263$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFTEQhoO02C8v_AOy4I1ebJtksxtzI0htPYVWoR93QpjNTmpKNqnJbkv_vTnn1KIFDSQZmGde3pnZIRshBiTkNaP7rJyDgGmf8U6pF2SbtbytmaDNRompErVkrdoiOznfUMqk4vIl2eKKcsG7Zpt8P3boh-qzy1Ny_Ty5GKpoq8sEIZvyOPDVxQSTM9UZXAdcBheTG2cPK9aF6hzBl_KSWMwjhGqBMFRncUC_RzYt-IyvHv9dcnV8dHm4qE-_fTk5_HRaGyGFqjuQHeskWAuGCmVFcSl6lKiAsUE1qrEdFuOD6JlopW0p61WrmITeGiV5s0s-rnVv537EwWCYEnh9m9wI6UFHcPrvTHA_9HW80-0H1QghisC7R4EUf86YJz26bNB7CBjnrJnqGiFZ1y7Rt8_QmzinUNrTnHaCs3KX1Js_HT1Z-T34ArxfAybFnBPaJ4RRvVyqLkvVq6UW9uAZa9y0Gn9pxvn_Vdw7jw__ltZfj87XFb8AWtmyyw |
CitedBy_id | crossref_primary_10_1038_s42003_019_0643_8 crossref_primary_10_1016_j_lanepe_2024_101019 crossref_primary_10_3390_brainsci10121006 crossref_primary_10_3390_mi13111818 crossref_primary_10_1016_j_neulet_2021_135864 crossref_primary_10_1016_j_compbiomed_2019_103476 crossref_primary_10_1016_j_brs_2020_08_007 crossref_primary_10_1016_j_neulet_2020_134863 crossref_primary_10_1038_s41598_022_26870_z crossref_primary_10_1126_scirobotics_abg9907 crossref_primary_10_1016_j_neulet_2020_134871 crossref_primary_10_1038_s41598_019_46379_2 crossref_primary_10_1111_ejn_14232 crossref_primary_10_1016_j_clinph_2020_10_003 crossref_primary_10_1111_ner_12876 crossref_primary_10_1016_j_apm_2024_01_023 crossref_primary_10_1111_ner_13023 crossref_primary_10_1007_s10072_021_05156_8 crossref_primary_10_1088_1741_2552_ad625e crossref_primary_10_1371_journal_pone_0313155 |
Cites_doi | 10.1113/jphysiol.2011.221655 10.1007/s002490000090 10.1016/j.physbeh.2007.05.011 10.1016/j.eurpsy.2016.03.003 10.1111/ner.12125 10.1016/j.brs.2012.02.005 10.1109/TBME.2015.2498646 10.1016/j.brs.2014.09.016 10.1038/nature17183 10.1016/j.brs.2014.12.002 10.1109/TMAG.2010.2045389 10.1523/JNEUROSCI.2140-16.2016 10.1146/annurev.bioeng.9.061206.133100 10.1016/j.jns.2004.04.010 10.2529/PIERS090529114533 10.1006/bbrc.1996.1575 10.1109/20.42370 10.1016/j.brs.2013.03.007 10.1523/JNEUROSCI.2123-16.2017 10.1016/j.neulet.2007.01.015 10.1016/j.cub.2011.09.032 10.1038/nn.4265 10.1113/jphysiol.2011.211953 10.1002/mrm.24965 10.1118/1.597854 10.1002/mrm.1910370403 10.1038/srep34509 10.1002/mrm.25350 10.1016/j.medengphy.2017.02.003 10.1006/bbrc.1996.0751 10.1523/JNEUROSCI.4232-14.2015 10.1109/NER.2013.6696152 10.1002/bem.10124 10.1385/CBB:39:2:163 |
ContentType | Journal Article |
Copyright | 2017 International Neuromodulation Society 2017 International Neuromodulation Society. 2018 International Neuromodulation Society |
Copyright_xml | – notice: 2017 International Neuromodulation Society – notice: 2017 International Neuromodulation Society. – notice: 2018 International Neuromodulation Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
DOI | 10.1111/ner.12699 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1525-1403 |
EndPage | 347 |
ExternalDocumentID | PMC5893444 29024263 10_1111_ner_12699 NER12699 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIH funderid: R01MH091083 – fundername: Duke Institute for Brain Sciences – fundername: NIMH NIH HHS grantid: R01 MH091083 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AALRI AANHP AAONW AAQFI AAQQT AAXUO AAZKR ABCQN ABCUV ABDBF ABEML ABFNM ABJNI ACAHQ ACBWZ ACCFJ ACGFS ACMXC ACPOU ACPRK ACRLP ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFJKZ AFPWT AFXIZ AFZJQ AHMBA AIACR AIKHN AITUG AIURR AIWBW AJAOE AJBDE AKRWK ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMRAJ AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMXJE BNPGV BROTX BRXPI BY8 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBS EFJIC EJD EMK EST ESX EX3 F00 F01 F04 F5P FDB FEDTE FUBAC G-S G.N GODZA H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SSH SUPJJ SV3 T5K TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI XG1 YFH ZZTAW ~IA ~WT AAMMB AATTM AAYWO AAYXX ACIEU ACLOT ACVFH ADCNI ADPDF AEFGJ AEIPS AEUPX AFPUW AGQPQ AGXDD AIDQK AIDYY AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS FYGXN CGR CUY CVF ECM EIF NPM 7TK AGCQF K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4749-6a76167affac049f47924be7e9a11d9393f6e927d4b1457f501b95917abfc9723 |
IEDL.DBID | DR2 |
ISSN | 1094-7159 1525-1403 |
IngestDate | Tue Sep 30 16:37:45 EDT 2025 Wed Oct 01 14:44:18 EDT 2025 Sun Sep 07 03:42:29 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Wed Oct 01 04:05:00 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Wed Jan 22 16:44:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neuromodulation tSMS Model static magnetic field transcranial |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 2017 International Neuromodulation Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4749-6a76167affac049f47924be7e9a11d9393f6e927d4b1457f501b95917abfc9723 |
Notes | For more information on author guidelines, an explanation of our peer review process, and conflict of interest informed consent policies, please go to Conflict of Interest http://www.wiley.com/WileyCDA/Section/id-301854.html Source(s) of financial support: This work was supported in part by a Research Incubator Award from Duke Institute for Brain Sciences. J. J. Tharayil and J. M. Bernabei declare no relevant disclosures. S. M. Goetz is inventor on patents and patent applications on conventional transcranial magnetic stimulation with pulsed fields (TMS), and has received royalties through his current and previous employers as well as patent application support and research funding from Magstim. Unrelated to brain stimulation, he is also employed part‐time by Porsche AG, Stuttgart, Germany. A. V. Peterchev is inventor on patents and patent applications and has received research and travel support as well as patent royalties from Rogue Research, research and travel support, consulting fees, as well as equipment loan from Tal Medical, patent application support and hardware donations from Magstim, as well as equipment loans from MagVenture, all related to technology for conventional TMS with pulsed fields. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2390-4104 0000-0002-4385-065X |
PMID | 29024263 |
PQID | 2064216424 |
PQPubID | 1096366 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5893444 proquest_miscellaneous_1963471654 proquest_journals_2064216424 pubmed_primary_29024263 crossref_primary_10_1111_ner_12699 crossref_citationtrail_10_1111_ner_12699 wiley_primary_10_1111_ner_12699_NER12699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Neuromodulation (Malden, Mass.) |
PublicationTitleAlternate | Neuromodulation |
PublicationYear | 2018 |
Publisher | Elsevier Limited |
Publisher_xml | – name: Elsevier Limited |
References | 2015; 35 2004; 222 2000; 29 2016; 19 2010 2015; 73 2017; 43 2007; 92 2003; 39 2002 2015; 8 2013; 6 1996; 222 1989; 25 2016; 36 1996; 227 2011; 589 2016; 6 2007; 415 2010; 46 2017; 37 2001 1997; 37 2003; 24 2016; 531 2007; 9 2016; 63 2011; 21 2014; 17 2014; 7 2014; 72 2016; 26 1996; 23 Li (10.1111/ner.12699_bib11) 2010; 46 Rivadulla (10.1111/ner.12699_bib23) 2014; 17 St Pierre (10.1111/ner.12699_bib22) 2000; 29 Parazzini (10.1111/ner.12699_bib25) 2017; 43 Silbert (10.1111/ner.12699_bib2) 2013; 6 Schenck (10.1111/ner.12699_bib35) 1996; 23 Gonzalez-Rosa (10.1111/ner.12699_bib4) 2015; 35 Giachello (10.1111/ner.12699_bib13) 2016; 36 Shen (10.1111/ner.12699_bib14) 2007; 415 Dobson (10.1111/ner.12699_bib20) 1996; 227 Rosen (10.1111/ner.12699_bib19) 2003; 39 Deng (10.1111/ner.12699_bib27) 2013; 6 Rosen (10.1111/ner.12699_bib33) 2010 Boesch (10.1111/ner.12699_bib36) 1997; 37 Bestmann (10.1111/ner.12699_bib16) 2011; 21 Kirimoto (10.1111/ner.12699_bib6) 2014; 7 Houpt (10.1111/ner.12699_bib10) 2007; 92 Balcavage (10.1111/ner.12699_bib21) 1996; 222 Oliviero (10.1111/ner.12699_bib1) 2011; 589 Aguila (10.1111/ner.12699_bib5) 2016; 26 Chavanne (10.1111/ner.12699_bib30) 1989; 25 Stanley (10.1111/ner.12699_bib18) 2016; 531 Guadagnin (10.1111/ner.12699_bib32) 2016; 63 Nolte (10.1111/ner.12699_bib31) 2002 Wagner (10.1111/ner.12699_bib24) 2007; 9 Carrasco-Lopez (10.1111/ner.12699_bib7) 2017; 37 Glaser (10.1111/ner.12699_bib34) 2001 Kirimoto (10.1111/ner.12699_bib3) 2016; 6 Paulus (10.1111/ner.12699_bib15) 2011; 589 Buch (10.1111/ner.12699_bib37) 2015; 73 Oliviero (10.1111/ner.12699_bib28) 2015; 8 Lee (10.1111/ner.12699_bib26) 2016; 36 10.1111/ner.12699_bib8 Rosen (10.1111/ner.12699_bib9) 2003; 24 Rivadulla (10.1111/ner.12699_bib29) 2014; 17 Peprah (10.1111/ner.12699_bib38) 2014; 72 Wheeler (10.1111/ner.12699_bib17) 2016; 19 Coots (10.1111/ner.12699_bib12) 2004; 222 30295368 - Neuromodulation. 2018 Oct;21(7):723 |
References_xml | – volume: 36 start-page: 55 year: 2016 end-page: 64 article-title: Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model publication-title: Eur Psychiatry – volume: 6 start-page: 34509 year: 2016 article-title: Non‐invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices publication-title: Sci Rep – volume: 29 start-page: 455 year: 2000 end-page: 456 article-title: Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields publication-title: Eur Biophys J – volume: 227 start-page: 718 year: 1996 end-page: 723 article-title: Application of the ferromagnetic transduction model to D.C. and pulsed magnetic fields: effects on epileptogenic tissue and implications for cellular phone safety publication-title: Biochem Biophys Res Commun – year: 2001 – volume: 37 start-page: 484 year: 1997 end-page: 493 article-title: In vivo determination of intra‐myocellular lipids in human muscle by means of localized 1H‐MR‐spectroscopy publication-title: Magn Reson Med – volume: 531 start-page: 647 year: 2016 end-page: 650 article-title: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism publication-title: Nature – volume: 43 start-page: 30 year: 2017 end-page: 38 article-title: Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models publication-title: Med Eng Phys – volume: 23 start-page: 815 year: 1996 end-page: 850 article-title: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds publication-title: Med Phys – volume: 6 start-page: 1 year: 2013 end-page: 13 article-title: Electric field depth‐focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs publication-title: Brain Stimul – volume: 46 start-page: 2635 year: 2010 end-page: 2638 article-title: Characteristics of delayed rectifier potassium channels exposed to 3 mT static magnetic field publication-title: IEEE Trans Magn – volume: 9 start-page: 527 year: 2007 end-page: 565 article-title: Noninvasive human brain stimulation publication-title: Annu Rev Biomed Eng – volume: 19 start-page: 756 year: 2016 end-page: 761 article-title: Genetically targeted magnetic control of the nervous system publication-title: Nat Neurosci – start-page: 133 year: 2010 end-page: 136 article-title: Studies on the effect of static magnetic fields on biological systems publication-title: PIERS Online – volume: 6 start-page: 817 year: 2013 end-page: 820 article-title: Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex publication-title: Brain Stimul – volume: 39 start-page: 163 year: 2003 end-page: 173 article-title: Mechanism of action of moderate‐intensity static magnetic fields on biological systems publication-title: Cell Biochem Biophys – volume: 36 start-page: 10742 year: 2016 end-page: 10749 article-title: Magnetic fields modulate blue‐light‐dependent regulation of neuronal firing by cryptochrome publication-title: J Neurosci – volume: 25 start-page: 3581 year: 1989 end-page: 3583 article-title: Nonlinear permanent magnets modelling with the finite element method publication-title: IEEE Trans Magn – volume: 8 start-page: 481 year: 2015 end-page: 485 article-title: Safety study of transcranial static magnetic field stimulation (tSMS) of the human cortex publication-title: Brain Stimul – volume: 63 start-page: 1543 year: 2016 end-page: 1550 article-title: Deep transcranial magnetic stimulation: modeling of different coil configurations publication-title: IEEE Trans Biomed Eng – year: 2002 – volume: 26 start-page: 628 year: 2016 end-page: 638 article-title: Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity publication-title: Cereb Cortex – volume: 415 start-page: 164 year: 2007 end-page: 168 article-title: Effects of static magnetic fields on the voltage‐gated potassium channel currents in trigeminal root ganglion neurons publication-title: Neurosci Lett – volume: 35 start-page: 9182 year: 2015 end-page: 9193 article-title: Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans publication-title: J Neurosci – volume: 92 start-page: 665 year: 2007 end-page: 674 article-title: Evidence for a cephalic site of action of high magnetic fields on the behavioral responses of rats publication-title: Physiol Behav – volume: 17 start-page: 438 year: 2014 end-page: 441 article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex publication-title: Neuromodulation – volume: 7 start-page: 836 year: 2014 end-page: 840 article-title: Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans publication-title: Brain Stimul – volume: 73 start-page: 2185 year: 2015 end-page: 2194 article-title: Susceptibility mapping of air, bone, and calcium in the head publication-title: Magn Reson Med – volume: 21 start-page: R893 year: 2011 end-page: R894 article-title: Neurostimulation: a new way to influence cortical excitability? publication-title: Curr Biol – volume: 222 start-page: 374 year: 1996 end-page: 378 article-title: A mechanism for action of extremely low frequency electromagnetic fields on biological systems publication-title: Biochem Biophys Res Commun – volume: 24 start-page: 517 year: 2003 end-page: 523 article-title: Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells publication-title: Bioelectromagnetics – volume: 222 start-page: 55 year: 2004 end-page: 57 article-title: Effect of a 0.5‐T static magnetic field on conduction in guinea pig spinal cord publication-title: J Neurol Sci – volume: 72 start-page: 876 year: 2014 end-page: 879 article-title: Absolute magnetic susceptibility of rat brain tissue publication-title: Magn Reson Med – volume: 17 start-page: 432 year: 2014 end-page: 438 article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex publication-title: Neuromodulation – volume: 589 start-page: 4949 year: 2011 end-page: 4958 article-title: Transcranial static magnetic field stimulation of the human motor cortex publication-title: J Physiol – volume: 37 start-page: 3840 year: 2017 end-page: 3847 article-title: Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans publication-title: J Neurosci – volume: 589 start-page: 5917 year: 2011 end-page: 5918 article-title: Transcranial static magnetic field stimulation in man: making things as simple as possible? publication-title: J Physiol – volume: 589 start-page: 5917 year: 2011 ident: 10.1111/ner.12699_bib15 article-title: Transcranial static magnetic field stimulation in man: making things as simple as possible? publication-title: J Physiol doi: 10.1113/jphysiol.2011.221655 – volume: 29 start-page: 455 year: 2000 ident: 10.1111/ner.12699_bib22 article-title: Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields publication-title: Eur Biophys J doi: 10.1007/s002490000090 – volume: 92 start-page: 665 year: 2007 ident: 10.1111/ner.12699_bib10 article-title: Evidence for a cephalic site of action of high magnetic fields on the behavioral responses of rats publication-title: Physiol Behav doi: 10.1016/j.physbeh.2007.05.011 – volume: 36 start-page: 55 year: 2016 ident: 10.1111/ner.12699_bib26 article-title: Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model publication-title: Eur Psychiatry doi: 10.1016/j.eurpsy.2016.03.003 – volume: 17 start-page: 438 year: 2014 ident: 10.1111/ner.12699_bib29 article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex publication-title: Neuromodulation doi: 10.1111/ner.12125 – volume: 6 start-page: 1 year: 2013 ident: 10.1111/ner.12699_bib27 article-title: Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs publication-title: Brain Stimul doi: 10.1016/j.brs.2012.02.005 – volume: 63 start-page: 1543 year: 2016 ident: 10.1111/ner.12699_bib32 article-title: Deep transcranial magnetic stimulation: modeling of different coil configurations publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2498646 – volume: 7 start-page: 836 year: 2014 ident: 10.1111/ner.12699_bib6 article-title: Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2014.09.016 – volume: 531 start-page: 647 year: 2016 ident: 10.1111/ner.12699_bib18 article-title: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism publication-title: Nature doi: 10.1038/nature17183 – volume: 8 start-page: 481 year: 2015 ident: 10.1111/ner.12699_bib28 article-title: Safety study of transcranial static magnetic field stimulation (tSMS) of the human cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2014.12.002 – volume: 46 start-page: 2635 year: 2010 ident: 10.1111/ner.12699_bib11 article-title: Characteristics of delayed rectifier potassium channels exposed to 3 mT static magnetic field publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2010.2045389 – volume: 36 start-page: 10742 year: 2016 ident: 10.1111/ner.12699_bib13 article-title: Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2140-16.2016 – volume: 9 start-page: 527 year: 2007 ident: 10.1111/ner.12699_bib24 article-title: Noninvasive human brain stimulation publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.9.061206.133100 – volume: 222 start-page: 55 year: 2004 ident: 10.1111/ner.12699_bib12 article-title: Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord publication-title: J Neurol Sci doi: 10.1016/j.jns.2004.04.010 – start-page: 133 year: 2010 ident: 10.1111/ner.12699_bib33 article-title: Studies on the effect of static magnetic fields on biological systems publication-title: PIERS Online doi: 10.2529/PIERS090529114533 – volume: 227 start-page: 718 year: 1996 ident: 10.1111/ner.12699_bib20 article-title: Application of the ferromagnetic transduction model to D.C. and pulsed magnetic fields: effects on epileptogenic tissue and implications for cellular phone safety publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1996.1575 – volume: 25 start-page: 3581 year: 1989 ident: 10.1111/ner.12699_bib30 article-title: Nonlinear permanent magnets modelling with the finite element method publication-title: IEEE Trans Magn doi: 10.1109/20.42370 – volume: 6 start-page: 817 year: 2013 ident: 10.1111/ner.12699_bib2 article-title: Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2013.03.007 – volume: 37 start-page: 3840 year: 2017 ident: 10.1111/ner.12699_bib7 article-title: Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2123-16.2017 – volume: 415 start-page: 164 year: 2007 ident: 10.1111/ner.12699_bib14 article-title: Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.01.015 – volume: 21 start-page: R893 year: 2011 ident: 10.1111/ner.12699_bib16 article-title: Neurostimulation: a new way to influence cortical excitability? publication-title: Curr Biol doi: 10.1016/j.cub.2011.09.032 – year: 2002 ident: 10.1111/ner.12699_bib31 – volume: 19 start-page: 756 year: 2016 ident: 10.1111/ner.12699_bib17 article-title: Genetically targeted magnetic control of the nervous system publication-title: Nat Neurosci doi: 10.1038/nn.4265 – volume: 589 start-page: 4949 year: 2011 ident: 10.1111/ner.12699_bib1 article-title: Transcranial static magnetic field stimulation of the human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.2011.211953 – volume: 72 start-page: 876 year: 2014 ident: 10.1111/ner.12699_bib38 article-title: Absolute magnetic susceptibility of rat brain tissue publication-title: Magn Reson Med doi: 10.1002/mrm.24965 – volume: 23 start-page: 815 year: 1996 ident: 10.1111/ner.12699_bib35 article-title: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds publication-title: Med Phys doi: 10.1118/1.597854 – volume: 37 start-page: 484 year: 1997 ident: 10.1111/ner.12699_bib36 article-title: In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy publication-title: Magn Reson Med doi: 10.1002/mrm.1910370403 – year: 2001 ident: 10.1111/ner.12699_bib34 – volume: 6 start-page: 34509 year: 2016 ident: 10.1111/ner.12699_bib3 article-title: Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices publication-title: Sci Rep doi: 10.1038/srep34509 – volume: 73 start-page: 2185 year: 2015 ident: 10.1111/ner.12699_bib37 article-title: Susceptibility mapping of air, bone, and calcium in the head publication-title: Magn Reson Med doi: 10.1002/mrm.25350 – volume: 17 start-page: 432 year: 2014 ident: 10.1111/ner.12699_bib23 article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex publication-title: Neuromodulation doi: 10.1111/ner.12125 – volume: 43 start-page: 30 year: 2017 ident: 10.1111/ner.12699_bib25 article-title: Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2017.02.003 – volume: 222 start-page: 374 year: 1996 ident: 10.1111/ner.12699_bib21 article-title: A mechanism for action of extremely low frequency electromagnetic fields on biological systems publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1996.0751 – volume: 35 start-page: 9182 year: 2015 ident: 10.1111/ner.12699_bib4 article-title: Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4232-14.2015 – ident: 10.1111/ner.12699_bib8 doi: 10.1109/NER.2013.6696152 – volume: 26 start-page: 628 year: 2016 ident: 10.1111/ner.12699_bib5 article-title: Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity publication-title: Cereb Cortex – volume: 24 start-page: 517 year: 2003 ident: 10.1111/ner.12699_bib9 article-title: Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells publication-title: Bioelectromagnetics doi: 10.1002/bem.10124 – volume: 39 start-page: 163 year: 2003 ident: 10.1111/ner.12699_bib19 article-title: Mechanism of action of moderate-intensity static magnetic fields on biological systems publication-title: Cell Biochem Biophys doi: 10.1385/CBB:39:2:163 – reference: 30295368 - Neuromodulation. 2018 Oct;21(7):723 |
SSID | ssj0017927 |
Score | 2.2886777 |
Snippet | Objective
The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial... The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static... ObjectiveThe objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 340 |
SubjectTerms | Biophysical Phenomena Brain Computer Simulation Cortex (motor) Cortex (somatosensory) Data processing Finite element method Head Head - physiology Humans Magnetic Fields Magnetic susceptibility Models, Biological neuromodulation Prefrontal cortex Reproducibility of Results Sensorimotor integration Spatial distribution static magnetic field transcranial Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods tSMS Visual cortex |
Title | Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fner.12699 https://www.ncbi.nlm.nih.gov/pubmed/29024263 https://www.proquest.com/docview/2064216424 https://www.proquest.com/docview/1963471654 https://pubmed.ncbi.nlm.nih.gov/PMC5893444 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1525-1403 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017927 issn: 1094-7159 databaseCode: ACRLP dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1525-1403 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017927 issn: 1094-7159 databaseCode: AIKHN dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1525-1403 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017927 issn: 1094-7159 databaseCode: AKRWK dateStart: 19980101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1094-7159 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1525-1403 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017927 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQp17aUlqaQiu3QhWXjeKsH7E4oZYoqgSHCCQOSCs_2whwKpIc4Ncz432IFCpVPexqV5592TOemfXMN4Tse18KFVwovOXgoCini5HxWM3d8OiiHXiGCc4np3Jyzn9ciIsNctjmwtT4EN0PN5SMPF-jgBu7eCTkKdz22VBqTN5jpchLtNMOOgr4LJdrZeC-FAp0doMqhFE83ZXruuiJgfk0TvKx_ZoV0PgVuWxfvY47ueqvlrbv7v9AdfzPb3tNXjaGKT2qOWmLbIT0hmwfJXDKb-7oV5pDRfM_-G1yOca4N_odQXebell0HmnWew52wNMUrdiZoyfmZ8I8STif3TSlwugs0WlA5EVsyMsIdAK8RrEw2_Vbcj4-Pvs2KZoyDYXjiutCGiWZVCZG48DfiBy6ntuggjaMeV3qMsoAo-G5ZVyoKAbMagFuorHRYdGzd2QzzVN4T6gdhoHysjQWvLgyeM1KaRwYFUKPDIxijxy0A1a5BsMcS2lcV60vAz1X5Z7rkS8d6e8auOM5or121KtGdhfVMCf_wsZ75HPXDFKHSykmhflqUeG8BWpdCqDZqZmke8pQ1zD4PaLW2KcjQETv9ZY0-5WRvQVYj5zDPQ8yd_z9xavT42k--PDvpLvkBVh7ozrObY9sLm9X4SNYVEv7KYvOA4qlHlU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QAvDBiMjg0MQmgvqZrGiWuJl2lbVWDtQ7VJewBF_oSKzUVb-7D99dw5H1oZSIiHRIl8SRz7zndnn38H8M7aLBfOuMRqjg6KMDIZKEvZ3BX3xuueTWmD83hSjE75p7P8bA0-NHthKnyIdsKNJCOO1yTgNCF9S8qDu-ym_ULKe3Cf1udILA-nLXgUclpM2JqiA5MI1No1rhDF8bSPrmqjOybm3UjJ2xZsVEHDDfjaVL6KPPnRXS5019z8huv4v3_3GB7Vtinbr5jpCay58BQ29wP65RfX7D2L0aJxGn4Tvgwp9I0dEu5unTKLzT2Lqs_gCdmakSE7M2ysvgXaKon3s4s6WxibBTZ1BL5IBXElgY2Q3RjlZjt_BqfDo5ODUVJnakgMF1wmhRJFWgjlvTLocniObc-1E06qNLUyk5kvHHaH5TrlufB5L9UyR09RaW8o79lzWA_z4F4A033XE7bIlEZHLnNWplmhDNoVuRwo7MYO7DU9VpoaxpyyaZyXjTuDLVfGluvA25b0Z4Xd8Seinabby1p8r8p-3P-LB-_Am7YYBY9WU1Rw8-VVSUMXavYiR5qtikvar_RlhYTfAbHCPy0BgXqvloTZ9wjunaMByTm-cy-yx98rXk6OpvFi-99JX8OD0cn4uDz-OPn8Eh6i8Teowt52YH1xuXS7aGAt9KsoR78AU-QicQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEuvAolUGBBCPXiKBuvd7PiVNFG4dEIRVTqoZK1T4honapNDvDrmVk_1FCQEAdbtnb82p3xfGPPfgPw2vu8UMGFzFuBAYpyOhsZT9XcjYgu2oHnNMH5cConR-LDcXG8AW_buTA1P0T3wY0sI72vycDPfbxi5FW46POh1PoG3BQSoytCRLOOOwoVLdVr5Ri_ZAqddkMrRGk83aHrzugawryeKHkVwCYPNL4LJ-2914kn3_urpe27n7_ROv7nw92DOw0yZXu1Kt2HjVA9gK29CqPysx_sDUu5oukj_BacjCnxje0T625TMIstIkuOz-EKlZoRjJ07dmi-VjRREvfnZ02tMDav2CwQ9SI1pP8IbILKxqgy2-lDOBoffHk3yZo6DZkTSuhMGiW5VCZG4zDgiAK7Xtiggjace53rPMqAo-GF5aJQsRhwqwuME42NjqqePYLNalGFx8DsMAyUl7mxGMblwWueS-MQVRR6ZHAUe7DbDljpGhJzqqVxWrbBDPZcmXquB6860fOaueNPQjvtqJeN8V6WwzT7FxfRg5ddM5od_UsxVVisLkt6caFflwXKbNdK0l1lqGse_B6oNfXpBIjSe72lmn9L1N4Fwkch8Jy7STv-fuPl9GCWNp78u-gLuPV5f1x-ej_9-BRuI_Ib1TlvO7C5vFiFZ4iulvZ5sqJf2p8hIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+distribution+of+transcranial+static+magnetic+stimulation+in+realistic+human+head+model&rft.jtitle=Neuromodulation+%28Malden%2C+Mass.%29&rft.au=Tharayil%2C+Joseph+J.&rft.au=Goetz%2C+Stefan+M.&rft.au=Bernabei%2C+John+M.&rft.au=Peterchev%2C+Angel+V.&rft.date=2018-06-01&rft.issn=1094-7159&rft.eissn=1525-1403&rft.volume=21&rft.issue=4&rft.spage=340&rft.epage=347&rft_id=info:doi/10.1111%2Fner.12699&rft_id=info%3Apmid%2F29024263&rft.externalDocID=PMC5893444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-7159&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-7159&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-7159&client=summon |