Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model

Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). Materials and Methods The spatial distribution of the B‐field magnitude and gradient of a cylindrica...

Full description

Saved in:
Bibliographic Details
Published inNeuromodulation (Malden, Mass.) Vol. 21; no. 4; pp. 340 - 347
Main Authors Tharayil, Joseph J., Goetz, Stefan M., Bernabei, John M., Peterchev, Angel V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Limited 01.06.2018
Subjects
Online AccessGet full text
ISSN1094-7159
1525-1403
1525-1403
DOI10.1111/ner.12699

Cover

Abstract Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). Materials and Methods The spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified. Results Peak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3. Significance This is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.
AbstractList The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm . This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.
The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).OBJECTIVEThe objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified.MATERIALS AND METHODSThe spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified.Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 .RESULTSPeak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 .This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.SIGNIFICANCEThis is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.
Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). Materials and Methods The spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified. Results Peak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3. Significance This is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.
ObjectiveThe objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS).Materials and MethodsThe spatial distribution of the B‐field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B‐field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B‐field was quantified.ResultsPeak B‐field magnitude and gradient respectively ranged from 179–245 mT and from 13.3–19.0 T/m across the cortical targets. B‐field magnitude, focality, and gradient decreased with magnet–cortex distance. The variation in B‐field strength and gradient across the anatomical targets largely arose from the magnet–cortex distance. Head magnetic susceptibilities had negligible impact on the B‐field characteristics. The half‐maximum focality of the tSMS B‐field ranged from 7–12 cm3.SignificanceThis is the first presentation and characterization of the three‐dimensional (3D) spatial distribution of the B‐field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B‐field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.
Author Bernabei, John M.
Goetz, Stefan M.
Tharayil, Joseph J.
Peterchev, Angel V.
AuthorAffiliation 5 School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
2 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, US
4 School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
6 Department of Neurosurgery, Duke University, Durham, NC, US
3 Department of Electrical and Computer Engineering, Duke University, Durham, NC, US
1 Department of Biomedical Engineering, Duke University, Durham, NC, USA
AuthorAffiliation_xml – name: 4 School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 5 School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
– name: 1 Department of Biomedical Engineering, Duke University, Durham, NC, USA
– name: 6 Department of Neurosurgery, Duke University, Durham, NC, US
– name: 2 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, US
– name: 3 Department of Electrical and Computer Engineering, Duke University, Durham, NC, US
Author_xml – sequence: 1
  givenname: Joseph J.
  orcidid: 0000-0002-2390-4104
  surname: Tharayil
  fullname: Tharayil, Joseph J.
  organization: Duke University
– sequence: 2
  givenname: Stefan M.
  surname: Goetz
  fullname: Goetz, Stefan M.
  organization: Duke University
– sequence: 3
  givenname: John M.
  surname: Bernabei
  fullname: Bernabei, John M.
  organization: University of Pennsylvania
– sequence: 4
  givenname: Angel V.
  orcidid: 0000-0002-4385-065X
  surname: Peterchev
  fullname: Peterchev, Angel V.
  email: angel.peterchev@duke.edu
  organization: Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29024263$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFTEQhoO02C8v_AOy4I1ebJtksxtzI0htPYVWoR93QpjNTmpKNqnJbkv_vTnn1KIFDSQZmGde3pnZIRshBiTkNaP7rJyDgGmf8U6pF2SbtbytmaDNRompErVkrdoiOznfUMqk4vIl2eKKcsG7Zpt8P3boh-qzy1Ny_Ty5GKpoq8sEIZvyOPDVxQSTM9UZXAdcBheTG2cPK9aF6hzBl_KSWMwjhGqBMFRncUC_RzYt-IyvHv9dcnV8dHm4qE-_fTk5_HRaGyGFqjuQHeskWAuGCmVFcSl6lKiAsUE1qrEdFuOD6JlopW0p61WrmITeGiV5s0s-rnVv537EwWCYEnh9m9wI6UFHcPrvTHA_9HW80-0H1QghisC7R4EUf86YJz26bNB7CBjnrJnqGiFZ1y7Rt8_QmzinUNrTnHaCs3KX1Js_HT1Z-T34ArxfAybFnBPaJ4RRvVyqLkvVq6UW9uAZa9y0Gn9pxvn_Vdw7jw__ltZfj87XFb8AWtmyyw
CitedBy_id crossref_primary_10_1038_s42003_019_0643_8
crossref_primary_10_1016_j_lanepe_2024_101019
crossref_primary_10_3390_brainsci10121006
crossref_primary_10_3390_mi13111818
crossref_primary_10_1016_j_neulet_2021_135864
crossref_primary_10_1016_j_compbiomed_2019_103476
crossref_primary_10_1016_j_brs_2020_08_007
crossref_primary_10_1016_j_neulet_2020_134863
crossref_primary_10_1038_s41598_022_26870_z
crossref_primary_10_1126_scirobotics_abg9907
crossref_primary_10_1016_j_neulet_2020_134871
crossref_primary_10_1038_s41598_019_46379_2
crossref_primary_10_1111_ejn_14232
crossref_primary_10_1016_j_clinph_2020_10_003
crossref_primary_10_1111_ner_12876
crossref_primary_10_1016_j_apm_2024_01_023
crossref_primary_10_1111_ner_13023
crossref_primary_10_1007_s10072_021_05156_8
crossref_primary_10_1088_1741_2552_ad625e
crossref_primary_10_1371_journal_pone_0313155
Cites_doi 10.1113/jphysiol.2011.221655
10.1007/s002490000090
10.1016/j.physbeh.2007.05.011
10.1016/j.eurpsy.2016.03.003
10.1111/ner.12125
10.1016/j.brs.2012.02.005
10.1109/TBME.2015.2498646
10.1016/j.brs.2014.09.016
10.1038/nature17183
10.1016/j.brs.2014.12.002
10.1109/TMAG.2010.2045389
10.1523/JNEUROSCI.2140-16.2016
10.1146/annurev.bioeng.9.061206.133100
10.1016/j.jns.2004.04.010
10.2529/PIERS090529114533
10.1006/bbrc.1996.1575
10.1109/20.42370
10.1016/j.brs.2013.03.007
10.1523/JNEUROSCI.2123-16.2017
10.1016/j.neulet.2007.01.015
10.1016/j.cub.2011.09.032
10.1038/nn.4265
10.1113/jphysiol.2011.211953
10.1002/mrm.24965
10.1118/1.597854
10.1002/mrm.1910370403
10.1038/srep34509
10.1002/mrm.25350
10.1016/j.medengphy.2017.02.003
10.1006/bbrc.1996.0751
10.1523/JNEUROSCI.4232-14.2015
10.1109/NER.2013.6696152
10.1002/bem.10124
10.1385/CBB:39:2:163
ContentType Journal Article
Copyright 2017 International Neuromodulation Society
2017 International Neuromodulation Society.
2018 International Neuromodulation Society
Copyright_xml – notice: 2017 International Neuromodulation Society
– notice: 2017 International Neuromodulation Society.
– notice: 2018 International Neuromodulation Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1111/ner.12699
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1525-1403
EndPage 347
ExternalDocumentID PMC5893444
29024263
10_1111_ner_12699
NER12699
Genre article
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: R01MH091083
– fundername: Duke Institute for Brain Sciences
– fundername: NIMH NIH HHS
  grantid: R01 MH091083
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAXUO
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFNM
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACGFS
ACMXC
ACPOU
ACPRK
ACRLP
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFJKZ
AFPWT
AFXIZ
AFZJQ
AHMBA
AIACR
AIKHN
AITUG
AIURR
AIWBW
AJAOE
AJBDE
AKRWK
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMRAJ
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMXJE
BNPGV
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBS
EFJIC
EJD
EMK
EST
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SSH
SUPJJ
SV3
T5K
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AATTM
AAYWO
AAYXX
ACIEU
ACLOT
ACVFH
ADCNI
ADPDF
AEFGJ
AEIPS
AEUPX
AFPUW
AGQPQ
AGXDD
AIDQK
AIDYY
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
FYGXN
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AGCQF
K9.
7X8
5PM
ID FETCH-LOGICAL-c4749-6a76167affac049f47924be7e9a11d9393f6e927d4b1457f501b95917abfc9723
IEDL.DBID DR2
ISSN 1094-7159
1525-1403
IngestDate Tue Sep 30 16:37:45 EDT 2025
Wed Oct 01 14:44:18 EDT 2025
Sun Sep 07 03:42:29 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Wed Oct 01 04:05:00 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Wed Jan 22 16:44:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neuromodulation
tSMS
Model
static magnetic field
transcranial
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2017 International Neuromodulation Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4749-6a76167affac049f47924be7e9a11d9393f6e927d4b1457f501b95917abfc9723
Notes For more information on author guidelines, an explanation of our peer review process, and conflict of interest informed consent policies, please go to
Conflict of Interest
http://www.wiley.com/WileyCDA/Section/id-301854.html
Source(s) of financial support: This work was supported in part by a Research Incubator Award from Duke Institute for Brain Sciences.
J. J. Tharayil and J. M. Bernabei declare no relevant disclosures. S. M. Goetz is inventor on patents and patent applications on conventional transcranial magnetic stimulation with pulsed fields (TMS), and has received royalties through his current and previous employers as well as patent application support and research funding from Magstim. Unrelated to brain stimulation, he is also employed part‐time by Porsche AG, Stuttgart, Germany. A. V. Peterchev is inventor on patents and patent applications and has received research and travel support as well as patent royalties from Rogue Research, research and travel support, consulting fees, as well as equipment loan from Tal Medical, patent application support and hardware donations from Magstim, as well as equipment loans from MagVenture, all related to technology for conventional TMS with pulsed fields.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2390-4104
0000-0002-4385-065X
PMID 29024263
PQID 2064216424
PQPubID 1096366
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5893444
proquest_miscellaneous_1963471654
proquest_journals_2064216424
pubmed_primary_29024263
crossref_primary_10_1111_ner_12699
crossref_citationtrail_10_1111_ner_12699
wiley_primary_10_1111_ner_12699_NER12699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Neuromodulation (Malden, Mass.)
PublicationTitleAlternate Neuromodulation
PublicationYear 2018
Publisher Elsevier Limited
Publisher_xml – name: Elsevier Limited
References 2015; 35
2004; 222
2000; 29
2016; 19
2010
2015; 73
2017; 43
2007; 92
2003; 39
2002
2015; 8
2013; 6
1996; 222
1989; 25
2016; 36
1996; 227
2011; 589
2016; 6
2007; 415
2010; 46
2017; 37
2001
1997; 37
2003; 24
2016; 531
2007; 9
2016; 63
2011; 21
2014; 17
2014; 7
2014; 72
2016; 26
1996; 23
Li (10.1111/ner.12699_bib11) 2010; 46
Rivadulla (10.1111/ner.12699_bib23) 2014; 17
St Pierre (10.1111/ner.12699_bib22) 2000; 29
Parazzini (10.1111/ner.12699_bib25) 2017; 43
Silbert (10.1111/ner.12699_bib2) 2013; 6
Schenck (10.1111/ner.12699_bib35) 1996; 23
Gonzalez-Rosa (10.1111/ner.12699_bib4) 2015; 35
Giachello (10.1111/ner.12699_bib13) 2016; 36
Shen (10.1111/ner.12699_bib14) 2007; 415
Dobson (10.1111/ner.12699_bib20) 1996; 227
Rosen (10.1111/ner.12699_bib19) 2003; 39
Deng (10.1111/ner.12699_bib27) 2013; 6
Rosen (10.1111/ner.12699_bib33) 2010
Boesch (10.1111/ner.12699_bib36) 1997; 37
Bestmann (10.1111/ner.12699_bib16) 2011; 21
Kirimoto (10.1111/ner.12699_bib6) 2014; 7
Houpt (10.1111/ner.12699_bib10) 2007; 92
Balcavage (10.1111/ner.12699_bib21) 1996; 222
Oliviero (10.1111/ner.12699_bib1) 2011; 589
Aguila (10.1111/ner.12699_bib5) 2016; 26
Chavanne (10.1111/ner.12699_bib30) 1989; 25
Stanley (10.1111/ner.12699_bib18) 2016; 531
Guadagnin (10.1111/ner.12699_bib32) 2016; 63
Nolte (10.1111/ner.12699_bib31) 2002
Wagner (10.1111/ner.12699_bib24) 2007; 9
Carrasco-Lopez (10.1111/ner.12699_bib7) 2017; 37
Glaser (10.1111/ner.12699_bib34) 2001
Kirimoto (10.1111/ner.12699_bib3) 2016; 6
Paulus (10.1111/ner.12699_bib15) 2011; 589
Buch (10.1111/ner.12699_bib37) 2015; 73
Oliviero (10.1111/ner.12699_bib28) 2015; 8
Lee (10.1111/ner.12699_bib26) 2016; 36
10.1111/ner.12699_bib8
Rosen (10.1111/ner.12699_bib9) 2003; 24
Rivadulla (10.1111/ner.12699_bib29) 2014; 17
Peprah (10.1111/ner.12699_bib38) 2014; 72
Wheeler (10.1111/ner.12699_bib17) 2016; 19
Coots (10.1111/ner.12699_bib12) 2004; 222
30295368 - Neuromodulation. 2018 Oct;21(7):723
References_xml – volume: 36
  start-page: 55
  year: 2016
  end-page: 64
  article-title: Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model
  publication-title: Eur Psychiatry
– volume: 6
  start-page: 34509
  year: 2016
  article-title: Non‐invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices
  publication-title: Sci Rep
– volume: 29
  start-page: 455
  year: 2000
  end-page: 456
  article-title: Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields
  publication-title: Eur Biophys J
– volume: 227
  start-page: 718
  year: 1996
  end-page: 723
  article-title: Application of the ferromagnetic transduction model to D.C. and pulsed magnetic fields: effects on epileptogenic tissue and implications for cellular phone safety
  publication-title: Biochem Biophys Res Commun
– year: 2001
– volume: 37
  start-page: 484
  year: 1997
  end-page: 493
  article-title: In vivo determination of intra‐myocellular lipids in human muscle by means of localized 1H‐MR‐spectroscopy
  publication-title: Magn Reson Med
– volume: 531
  start-page: 647
  year: 2016
  end-page: 650
  article-title: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism
  publication-title: Nature
– volume: 43
  start-page: 30
  year: 2017
  end-page: 38
  article-title: Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models
  publication-title: Med Eng Phys
– volume: 23
  start-page: 815
  year: 1996
  end-page: 850
  article-title: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds
  publication-title: Med Phys
– volume: 6
  start-page: 1
  year: 2013
  end-page: 13
  article-title: Electric field depth‐focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs
  publication-title: Brain Stimul
– volume: 46
  start-page: 2635
  year: 2010
  end-page: 2638
  article-title: Characteristics of delayed rectifier potassium channels exposed to 3 mT static magnetic field
  publication-title: IEEE Trans Magn
– volume: 9
  start-page: 527
  year: 2007
  end-page: 565
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
– volume: 19
  start-page: 756
  year: 2016
  end-page: 761
  article-title: Genetically targeted magnetic control of the nervous system
  publication-title: Nat Neurosci
– start-page: 133
  year: 2010
  end-page: 136
  article-title: Studies on the effect of static magnetic fields on biological systems
  publication-title: PIERS Online
– volume: 6
  start-page: 817
  year: 2013
  end-page: 820
  article-title: Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex
  publication-title: Brain Stimul
– volume: 39
  start-page: 163
  year: 2003
  end-page: 173
  article-title: Mechanism of action of moderate‐intensity static magnetic fields on biological systems
  publication-title: Cell Biochem Biophys
– volume: 36
  start-page: 10742
  year: 2016
  end-page: 10749
  article-title: Magnetic fields modulate blue‐light‐dependent regulation of neuronal firing by cryptochrome
  publication-title: J Neurosci
– volume: 25
  start-page: 3581
  year: 1989
  end-page: 3583
  article-title: Nonlinear permanent magnets modelling with the finite element method
  publication-title: IEEE Trans Magn
– volume: 8
  start-page: 481
  year: 2015
  end-page: 485
  article-title: Safety study of transcranial static magnetic field stimulation (tSMS) of the human cortex
  publication-title: Brain Stimul
– volume: 63
  start-page: 1543
  year: 2016
  end-page: 1550
  article-title: Deep transcranial magnetic stimulation: modeling of different coil configurations
  publication-title: IEEE Trans Biomed Eng
– year: 2002
– volume: 26
  start-page: 628
  year: 2016
  end-page: 638
  article-title: Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity
  publication-title: Cereb Cortex
– volume: 415
  start-page: 164
  year: 2007
  end-page: 168
  article-title: Effects of static magnetic fields on the voltage‐gated potassium channel currents in trigeminal root ganglion neurons
  publication-title: Neurosci Lett
– volume: 35
  start-page: 9182
  year: 2015
  end-page: 9193
  article-title: Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans
  publication-title: J Neurosci
– volume: 92
  start-page: 665
  year: 2007
  end-page: 674
  article-title: Evidence for a cephalic site of action of high magnetic fields on the behavioral responses of rats
  publication-title: Physiol Behav
– volume: 17
  start-page: 438
  year: 2014
  end-page: 441
  article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex
  publication-title: Neuromodulation
– volume: 7
  start-page: 836
  year: 2014
  end-page: 840
  article-title: Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans
  publication-title: Brain Stimul
– volume: 73
  start-page: 2185
  year: 2015
  end-page: 2194
  article-title: Susceptibility mapping of air, bone, and calcium in the head
  publication-title: Magn Reson Med
– volume: 21
  start-page: R893
  year: 2011
  end-page: R894
  article-title: Neurostimulation: a new way to influence cortical excitability?
  publication-title: Curr Biol
– volume: 222
  start-page: 374
  year: 1996
  end-page: 378
  article-title: A mechanism for action of extremely low frequency electromagnetic fields on biological systems
  publication-title: Biochem Biophys Res Commun
– volume: 24
  start-page: 517
  year: 2003
  end-page: 523
  article-title: Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells
  publication-title: Bioelectromagnetics
– volume: 222
  start-page: 55
  year: 2004
  end-page: 57
  article-title: Effect of a 0.5‐T static magnetic field on conduction in guinea pig spinal cord
  publication-title: J Neurol Sci
– volume: 72
  start-page: 876
  year: 2014
  end-page: 879
  article-title: Absolute magnetic susceptibility of rat brain tissue
  publication-title: Magn Reson Med
– volume: 17
  start-page: 432
  year: 2014
  end-page: 438
  article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex
  publication-title: Neuromodulation
– volume: 589
  start-page: 4949
  year: 2011
  end-page: 4958
  article-title: Transcranial static magnetic field stimulation of the human motor cortex
  publication-title: J Physiol
– volume: 37
  start-page: 3840
  year: 2017
  end-page: 3847
  article-title: Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans
  publication-title: J Neurosci
– volume: 589
  start-page: 5917
  year: 2011
  end-page: 5918
  article-title: Transcranial static magnetic field stimulation in man: making things as simple as possible?
  publication-title: J Physiol
– volume: 589
  start-page: 5917
  year: 2011
  ident: 10.1111/ner.12699_bib15
  article-title: Transcranial static magnetic field stimulation in man: making things as simple as possible?
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.221655
– volume: 29
  start-page: 455
  year: 2000
  ident: 10.1111/ner.12699_bib22
  article-title: Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields
  publication-title: Eur Biophys J
  doi: 10.1007/s002490000090
– volume: 92
  start-page: 665
  year: 2007
  ident: 10.1111/ner.12699_bib10
  article-title: Evidence for a cephalic site of action of high magnetic fields on the behavioral responses of rats
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2007.05.011
– volume: 36
  start-page: 55
  year: 2016
  ident: 10.1111/ner.12699_bib26
  article-title: Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model
  publication-title: Eur Psychiatry
  doi: 10.1016/j.eurpsy.2016.03.003
– volume: 17
  start-page: 438
  year: 2014
  ident: 10.1111/ner.12699_bib29
  article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex
  publication-title: Neuromodulation
  doi: 10.1111/ner.12125
– volume: 6
  start-page: 1
  year: 2013
  ident: 10.1111/ner.12699_bib27
  article-title: Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.02.005
– volume: 63
  start-page: 1543
  year: 2016
  ident: 10.1111/ner.12699_bib32
  article-title: Deep transcranial magnetic stimulation: modeling of different coil configurations
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2498646
– volume: 7
  start-page: 836
  year: 2014
  ident: 10.1111/ner.12699_bib6
  article-title: Effect of transcranial static magnetic field stimulation over the sensorimotor cortex on somatosensory evoked potentials in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.09.016
– volume: 531
  start-page: 647
  year: 2016
  ident: 10.1111/ner.12699_bib18
  article-title: Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism
  publication-title: Nature
  doi: 10.1038/nature17183
– volume: 8
  start-page: 481
  year: 2015
  ident: 10.1111/ner.12699_bib28
  article-title: Safety study of transcranial static magnetic field stimulation (tSMS) of the human cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.12.002
– volume: 46
  start-page: 2635
  year: 2010
  ident: 10.1111/ner.12699_bib11
  article-title: Characteristics of delayed rectifier potassium channels exposed to 3 mT static magnetic field
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2010.2045389
– volume: 36
  start-page: 10742
  year: 2016
  ident: 10.1111/ner.12699_bib13
  article-title: Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2140-16.2016
– volume: 9
  start-page: 527
  year: 2007
  ident: 10.1111/ner.12699_bib24
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.061206.133100
– volume: 222
  start-page: 55
  year: 2004
  ident: 10.1111/ner.12699_bib12
  article-title: Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2004.04.010
– start-page: 133
  year: 2010
  ident: 10.1111/ner.12699_bib33
  article-title: Studies on the effect of static magnetic fields on biological systems
  publication-title: PIERS Online
  doi: 10.2529/PIERS090529114533
– volume: 227
  start-page: 718
  year: 1996
  ident: 10.1111/ner.12699_bib20
  article-title: Application of the ferromagnetic transduction model to D.C. and pulsed magnetic fields: effects on epileptogenic tissue and implications for cellular phone safety
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1996.1575
– volume: 25
  start-page: 3581
  year: 1989
  ident: 10.1111/ner.12699_bib30
  article-title: Nonlinear permanent magnets modelling with the finite element method
  publication-title: IEEE Trans Magn
  doi: 10.1109/20.42370
– volume: 6
  start-page: 817
  year: 2013
  ident: 10.1111/ner.12699_bib2
  article-title: Inverse correlation between resting motor threshold and corticomotor excitability after static magnetic stimulation of human motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.03.007
– volume: 37
  start-page: 3840
  year: 2017
  ident: 10.1111/ner.12699_bib7
  article-title: Static magnetic field stimulation over parietal cortex enhances somatosensory detection in humans
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2123-16.2017
– volume: 415
  start-page: 164
  year: 2007
  ident: 10.1111/ner.12699_bib14
  article-title: Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2007.01.015
– volume: 21
  start-page: R893
  year: 2011
  ident: 10.1111/ner.12699_bib16
  article-title: Neurostimulation: a new way to influence cortical excitability?
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.09.032
– year: 2002
  ident: 10.1111/ner.12699_bib31
– volume: 19
  start-page: 756
  year: 2016
  ident: 10.1111/ner.12699_bib17
  article-title: Genetically targeted magnetic control of the nervous system
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4265
– volume: 589
  start-page: 4949
  year: 2011
  ident: 10.1111/ner.12699_bib1
  article-title: Transcranial static magnetic field stimulation of the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.211953
– volume: 72
  start-page: 876
  year: 2014
  ident: 10.1111/ner.12699_bib38
  article-title: Absolute magnetic susceptibility of rat brain tissue
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24965
– volume: 23
  start-page: 815
  year: 1996
  ident: 10.1111/ner.12699_bib35
  article-title: The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds
  publication-title: Med Phys
  doi: 10.1118/1.597854
– volume: 37
  start-page: 484
  year: 1997
  ident: 10.1111/ner.12699_bib36
  article-title: In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370403
– year: 2001
  ident: 10.1111/ner.12699_bib34
– volume: 6
  start-page: 34509
  year: 2016
  ident: 10.1111/ner.12699_bib3
  article-title: Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices
  publication-title: Sci Rep
  doi: 10.1038/srep34509
– volume: 73
  start-page: 2185
  year: 2015
  ident: 10.1111/ner.12699_bib37
  article-title: Susceptibility mapping of air, bone, and calcium in the head
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25350
– volume: 17
  start-page: 432
  year: 2014
  ident: 10.1111/ner.12699_bib23
  article-title: Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex
  publication-title: Neuromodulation
  doi: 10.1111/ner.12125
– volume: 43
  start-page: 30
  year: 2017
  ident: 10.1111/ner.12699_bib25
  article-title: Electric field estimation of deep transcranial magnetic stimulation clinically used for the treatment of neuropsychiatric disorders in anatomical head models
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2017.02.003
– volume: 222
  start-page: 374
  year: 1996
  ident: 10.1111/ner.12699_bib21
  article-title: A mechanism for action of extremely low frequency electromagnetic fields on biological systems
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1996.0751
– volume: 35
  start-page: 9182
  year: 2015
  ident: 10.1111/ner.12699_bib4
  article-title: Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4232-14.2015
– ident: 10.1111/ner.12699_bib8
  doi: 10.1109/NER.2013.6696152
– volume: 26
  start-page: 628
  year: 2016
  ident: 10.1111/ner.12699_bib5
  article-title: Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity
  publication-title: Cereb Cortex
– volume: 24
  start-page: 517
  year: 2003
  ident: 10.1111/ner.12699_bib9
  article-title: Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.10124
– volume: 39
  start-page: 163
  year: 2003
  ident: 10.1111/ner.12699_bib19
  article-title: Mechanism of action of moderate-intensity static magnetic fields on biological systems
  publication-title: Cell Biochem Biophys
  doi: 10.1385/CBB:39:2:163
– reference: 30295368 - Neuromodulation. 2018 Oct;21(7):723
SSID ssj0017927
Score 2.2886777
Snippet Objective The objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial...
The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static...
ObjectiveThe objective of this work was to characterize the magnetic field (B‐field) that arises in a human brain model from the application of transcranial...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 340
SubjectTerms Biophysical Phenomena
Brain
Computer Simulation
Cortex (motor)
Cortex (somatosensory)
Data processing
Finite element method
Head
Head - physiology
Humans
Magnetic Fields
Magnetic susceptibility
Models, Biological
neuromodulation
Prefrontal cortex
Reproducibility of Results
Sensorimotor integration
Spatial distribution
static magnetic field
transcranial
Transcranial magnetic stimulation
Transcranial Magnetic Stimulation - methods
tSMS
Visual cortex
Title Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fner.12699
https://www.ncbi.nlm.nih.gov/pubmed/29024263
https://www.proquest.com/docview/2064216424
https://www.proquest.com/docview/1963471654
https://pubmed.ncbi.nlm.nih.gov/PMC5893444
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1525-1403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017927
  issn: 1094-7159
  databaseCode: ACRLP
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1525-1403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017927
  issn: 1094-7159
  databaseCode: AIKHN
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1525-1403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017927
  issn: 1094-7159
  databaseCode: AKRWK
  dateStart: 19980101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1094-7159
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1525-1403
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017927
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQp17aUlqaQiu3QhWXjeKsH7E4oZYoqgSHCCQOSCs_2whwKpIc4Ncz432IFCpVPexqV5592TOemfXMN4Tse18KFVwovOXgoCini5HxWM3d8OiiHXiGCc4np3Jyzn9ciIsNctjmwtT4EN0PN5SMPF-jgBu7eCTkKdz22VBqTN5jpchLtNMOOgr4LJdrZeC-FAp0doMqhFE83ZXruuiJgfk0TvKx_ZoV0PgVuWxfvY47ueqvlrbv7v9AdfzPb3tNXjaGKT2qOWmLbIT0hmwfJXDKb-7oV5pDRfM_-G1yOca4N_odQXebell0HmnWew52wNMUrdiZoyfmZ8I8STif3TSlwugs0WlA5EVsyMsIdAK8RrEw2_Vbcj4-Pvs2KZoyDYXjiutCGiWZVCZG48DfiBy6ntuggjaMeV3qMsoAo-G5ZVyoKAbMagFuorHRYdGzd2QzzVN4T6gdhoHysjQWvLgyeM1KaRwYFUKPDIxijxy0A1a5BsMcS2lcV60vAz1X5Z7rkS8d6e8auOM5or121KtGdhfVMCf_wsZ75HPXDFKHSykmhflqUeG8BWpdCqDZqZmke8pQ1zD4PaLW2KcjQETv9ZY0-5WRvQVYj5zDPQ8yd_z9xavT42k--PDvpLvkBVh7ozrObY9sLm9X4SNYVEv7KYvOA4qlHlU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N8QAvDBiMjg0MQmgvqZrGiWuJl2lbVWDtQ7VJewBF_oSKzUVb-7D99dw5H1oZSIiHRIl8SRz7zndnn38H8M7aLBfOuMRqjg6KMDIZKEvZ3BX3xuueTWmD83hSjE75p7P8bA0-NHthKnyIdsKNJCOO1yTgNCF9S8qDu-ym_ULKe3Cf1udILA-nLXgUclpM2JqiA5MI1No1rhDF8bSPrmqjOybm3UjJ2xZsVEHDDfjaVL6KPPnRXS5019z8huv4v3_3GB7Vtinbr5jpCay58BQ29wP65RfX7D2L0aJxGn4Tvgwp9I0dEu5unTKLzT2Lqs_gCdmakSE7M2ysvgXaKon3s4s6WxibBTZ1BL5IBXElgY2Q3RjlZjt_BqfDo5ODUVJnakgMF1wmhRJFWgjlvTLocniObc-1E06qNLUyk5kvHHaH5TrlufB5L9UyR09RaW8o79lzWA_z4F4A033XE7bIlEZHLnNWplmhDNoVuRwo7MYO7DU9VpoaxpyyaZyXjTuDLVfGluvA25b0Z4Xd8Seinabby1p8r8p-3P-LB-_Am7YYBY9WU1Rw8-VVSUMXavYiR5qtikvar_RlhYTfAbHCPy0BgXqvloTZ9wjunaMByTm-cy-yx98rXk6OpvFi-99JX8OD0cn4uDz-OPn8Eh6i8Teowt52YH1xuXS7aGAt9KsoR78AU-QicQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIiEuvAolUGBBCPXiKBuvd7PiVNFG4dEIRVTqoZK1T4honapNDvDrmVk_1FCQEAdbtnb82p3xfGPPfgPw2vu8UMGFzFuBAYpyOhsZT9XcjYgu2oHnNMH5cConR-LDcXG8AW_buTA1P0T3wY0sI72vycDPfbxi5FW46POh1PoG3BQSoytCRLOOOwoVLdVr5Ri_ZAqddkMrRGk83aHrzugawryeKHkVwCYPNL4LJ-2914kn3_urpe27n7_ROv7nw92DOw0yZXu1Kt2HjVA9gK29CqPysx_sDUu5oukj_BacjCnxje0T625TMIstIkuOz-EKlZoRjJ07dmi-VjRREvfnZ02tMDav2CwQ9SI1pP8IbILKxqgy2-lDOBoffHk3yZo6DZkTSuhMGiW5VCZG4zDgiAK7Xtiggjace53rPMqAo-GF5aJQsRhwqwuME42NjqqePYLNalGFx8DsMAyUl7mxGMblwWueS-MQVRR6ZHAUe7DbDljpGhJzqqVxWrbBDPZcmXquB6860fOaueNPQjvtqJeN8V6WwzT7FxfRg5ddM5od_UsxVVisLkt6caFflwXKbNdK0l1lqGse_B6oNfXpBIjSe72lmn9L1N4Fwkch8Jy7STv-fuPl9GCWNp78u-gLuPV5f1x-ej_9-BRuI_Ib1TlvO7C5vFiFZ4iulvZ5sqJf2p8hIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+distribution+of+transcranial+static+magnetic+stimulation+in+realistic+human+head+model&rft.jtitle=Neuromodulation+%28Malden%2C+Mass.%29&rft.au=Tharayil%2C+Joseph+J.&rft.au=Goetz%2C+Stefan+M.&rft.au=Bernabei%2C+John+M.&rft.au=Peterchev%2C+Angel+V.&rft.date=2018-06-01&rft.issn=1094-7159&rft.eissn=1525-1403&rft.volume=21&rft.issue=4&rft.spage=340&rft.epage=347&rft_id=info:doi/10.1111%2Fner.12699&rft_id=info%3Apmid%2F29024263&rft.externalDocID=PMC5893444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-7159&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-7159&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-7159&client=summon