Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study
Background and Aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to st...
Saved in:
| Published in | Hepatology (Baltimore, Md.) Vol. 78; no. 1; pp. 258 - 271 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hagerstown, MD
Lippincott Williams & Wilkins
01.07.2023
Wiley-Blackwell |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0270-9139 1527-3350 1527-3350 |
| DOI | 10.1097/HEP.0000000000000364 |
Cover
| Summary: | Background and Aims:
Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD.
Approach and Results:
Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.
Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82).
Conclusions:
Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis. |
|---|---|
| Bibliography: | Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; FIB-4, Fibrosis-4; GGT, gamma-glutamyl transferase; PRO-C3; Amino-terminal propeptide of procollagen type III; P3NP, Amino-terminal propeptide of type III procollagen; AUC, Area under the receiver operating characteristic curve; Carboxyterminal propeptides of procollagen type IV (PRO-C4) and VI (PRO-C6); CAP, Controlled attenuation parameter; CK-18, Cytokeratin-18; ELF, Enhanced Liver Fibrosis; FIB-4, Fibrosis-4; GBM, Gradient boosting method; HA, Hyaluronic acid; LITMUS, Liver Investigation: Testing Marker Utility in Steatohepatitis; LSM, Liver Stiffness Measurement; TIMP-1, Metalloproteinases 1; MICE, Multivariate imputation by chain equations; NAS, NAFLD activity score; NASH CRN, NASH Clinical Research Network; NITs, Noninvasive tests; VCTE, Vibration-Controlled Transient Elastography. The LITMUS Investigators/Group Authors: Quentin M. Anstee, Ann K. Daly, Olivier Govaere, Simon Cockell, Dina Tiniakos , Pierre Bedossa , Alastair Burt , Fiona Oakley, Heather J. Cordell, Christopher P. Day, Kristy Wonders, Paolo Missier, Matthew McTeer, Luke Vale, Yemi Oluboyede, Matt Breckons, Newcastle University. Patrick M. Bossuyt, Hadi Zafarmand, Yasaman Vali, Jenny Lee, Max Nieuwdorp, Adriaan G. Holleboom, Joanne Verheij , AMC Amsterdam. Vlad Ratziu, Karine Clément, Rafael Patino-Navarrete, Raluca Pais, Institute of Cardiometabolism And Nutrition. Valerie Paradis , Hôpital Beaujon, Assistance Publique Hopitaux de Paris. Detlef Schuppan, Jörn M. Schattenberg, Rambabu Surabattula, Sudha Myneni, Beate K. Straub , University Medical Center Mainz. Toni Vidal-Puig, Michele Vacca, Sergio Rodrigues-Cuenca, Mike Allison, Ioannis Kamzolas, Evangelia Petsalaki, Mark Campbell, Chris J. Lelliott, Susan Davies , University of Cambridge. Matej Orešič, Tuulia Hyötyläinen, Aiden McGlinchey, Örebro University. Jose M. Mato, Óscar Millet, Center for Cooperative Research in Biosciences. Jean-François Dufour, Annalisa Berzigotti, Mojgan Masoodi, University of Bern. Michael Pavlides, Stephen Harrison, Stefan Neubauer, Jeremy Cobbold, Ferenc Mozes, Salma Akhtar, Seliat Olodo-Atitebi, University of Oxford. Rajarshi Banerjee, Matt Kelly, Elizabeth Shumbayawonda, Andrea Dennis, Anneli Andersson, Ioan Wigley, Perspectum. Manuel Romero-Gómez, Emilio Gómez-González, Javier Ampuero, Javier Castell, Rocío Gallego-Durán, Isabel Fernández, Rocío Montero-Vallejo, Servicio Andaluz de Salud, Seville. Morten Karsdal, Daniel Guldager Kring Rasmussen, Diana Julie Leeming, Antonia Sinisi, Kishwar Musa, Nordic Bioscience. Estelle Sandt, Manuela Tonini, Integrated Biobank of Luxembourg. Elisabetta Bugianesi, Chiara Rosso, Angelo Armandi, University of Torino. Fabio Marra, Università degli Studi di Firenze, Amalia Gastaldelli, Consiglio Nazionale delle Ricerche. Gianluca Svegliati, Università Politecnica delle Marche. Jérôme Boursier, University Hospital of Angers. Sven Francque, Luisa Vonghia, Ann Driessen , Antwerp University Hospital. Mattias Ekstedt, Stergios Kechagias, Linköping University. Hannele Yki-Järvinen, Kimmo Porthan, Johanna Arola , University of Helsinki. Saskia van Mil, UMC Utrecht. George Papatheodoridis, National & Kapodistrian University of Athens. Helena Cortez-Pinto, Faculdade de Medicina, Universidade de Lisboa. Cecilia M. P. Rodrigues, Faculty of Pharmacy, Universidade de Lisboa. Luca Valenti, Serena Pelusi, Università degli Studi di Milano. Salvatore Petta, Grazia Pennisi, Università degli Studi di Palermo. Luca Miele, Università Cattolica del Sacro Cuore. Andreas Geier, University Hospital Würzburg. Christian Trautwein, RWTH Aachen University Hospital. Guruprasad P. Aithal, Susan Francis, University of Nottingham. Paul Hockings, Moritz Schneider, Antaros Medical. Philip Newsome, Stefan Hübscher , University Hospitals Birmingham NHS Foundation Trust. David Wenn, iXscient. Christian Rosenquist, Genfit. Aldo Trylesinski, Intercept Pharma. Rebeca Mayo, Cristina Alonso, OWL. Kevin Duffin, James W. Perfield, Yu Chen, Eli Lilly and Company. Carla Yunis, Theresa Tuthill, Magdalena Alicia Harrington, Melissa Miller, Yan Chen, Euan James McLeod, Trenton Ross, Barbara Bernardo, Pfizer. Corinna Schölch, Judith Ertle, Ramy Younes, Anouk Oldenburger, Boehringer Ingelheim. Rachel Ostroff, Leigh Alexander, Hannah Biegel, Somalogic. Mette Skalshøi Kjær, Lea Mørch Harder, Peter Davidsen, Novo Nordisk. Lars Friis Mikkelsen, Ellegaard Göttingen Minipigs, Maria-Magdalena Balp, Clifford Brass, Lori Jennings, Miljen Martic, Jürgen Löffler, Douglas Applegate, Novartis Pharma AG. Sudha Shankar, Richard Torstenson, AstraZeneca. Céline Fournier-Poizat, Anne Llorca, Echosens. Michael Kalutkiewicz, Kay Pepin, Richard Ehman, Resoundant. Gerald Horan, Bristol Myers Squibb. Gideon Ho, Dean Tai, Elaine Chng, HistoIndex. Scott D. Patterson, Andrew Billin, Gilead. Lynda Doward, James Twiss, RTI-HS. Paresh Thakker, Takeda Pharmaceuticals Company Ltd. Henrik Landgren, AbbVie. Carolin Lackner , Medical University of Graz. Annette Gouw , University of Groningen. Prodromos Hytiroglou , Aristotle University of Thessaloniki Quentin M. Anstee and Patrick M Bossuyt are joint senior auuthors. Correspondence Jenny Lee, Epidemiology and Data Science Amsterdam UMC, AMC Meibergdreef 9, 1105AZ Amsterdam, the Netherlands. Email: j.a.lee@amsterdamumc.nl Supplemental Digital Content is available for this article. Direct URL citations are provided in the HTML and PDF versions of this article on the journal's website, www.hepjournal.com. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0270-9139 1527-3350 1527-3350 |
| DOI: | 10.1097/HEP.0000000000000364 |