Delayed cortical bone healing due to impaired nuclear Nrf2 translocation in COPD mice
The effect of the pathogenesis of chronic obstructive pulmonary disease (COPD) on bone fracture healing is unknown. Oxidative stress has been implicated in the systemic complications of COPD, and decreased activity of Nrf2 signaling, a central component of the in vivo antioxidant mechanism, has been...
Saved in:
Published in | Bone (New York, N.Y.) Vol. 173; p. 116804 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 8756-3282 1873-2763 1873-2763 |
DOI | 10.1016/j.bone.2023.116804 |
Cover
Summary: | The effect of the pathogenesis of chronic obstructive pulmonary disease (COPD) on bone fracture healing is unknown. Oxidative stress has been implicated in the systemic complications of COPD, and decreased activity of Nrf2 signaling, a central component of the in vivo antioxidant mechanism, has been reported. We investigated the process of cortical bone repair in a mouse model of elastase-induced emphysema by creating a drill hole and focusing on Nrf2 and found that the amount of new bone in the drill hole was reduced and bone formation capacity was decreased in the model mice. Furthermore, nuclear Nrf2 expression in osteoblasts was reduced in model mice. Sulforaphane, an Nrf2 activator, improved delayed cortical bone healing in model mice. This study indicates that bone healing is delayed in COPD mice and that impaired nuclear translocation of Nrf2 is involved in delayed cortical bone healing, suggesting that Nrf2 may be a novel target for bone fracture treatment in COPD patients.
•Elastase-induced pulmonary emphysema mice were showed delayed cortical bone healing.•Bone healing was delayed due to impaired bone formation capacity in the model mice.•Nrf2 expression in nucleus of osteoblasts located in new bone was declined.•Administration of sulforaphane, an Nrf2 activator, ameliorated delayed bone healing.•Impaired nuclear Nrf2 translocation was involved in delayed bone healing in the mice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 8756-3282 1873-2763 1873-2763 |
DOI: | 10.1016/j.bone.2023.116804 |