Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 13; p. 3876 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
21.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25133876 |
Cover
| Abstract | LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift. |
|---|---|
| AbstractList | LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift. LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features-such as object contours and convex hulls-across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift.LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features-such as object contours and convex hulls-across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift. |
| Audience | Academic |
| Author | Cheok, Ka C. Song, Meiqi Radovnikovich, Micho Tian, Kaiqiao Kobayashi, Kazuyuki Cai, Changqing |
| AuthorAffiliation | 4 College of Electrical and Information Engineering, Changchun Institute of Technology, 395 Kuan Ping Road, Changchun 130103, China 2 Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA; msong@oakland.edu 3 Department of Advanced Sciences, Hosei University, Tokyo 184-8584, Japan; ikko@hosei.ac.jp 1 Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; tian2@oakland.edu (K.T.); cheok@oakland.edu (K.C.C.); mtradovn@oakland.edu (M.R.) |
| AuthorAffiliation_xml | – name: 1 Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; tian2@oakland.edu (K.T.); cheok@oakland.edu (K.C.C.); mtradovn@oakland.edu (M.R.) – name: 2 Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA; msong@oakland.edu – name: 4 College of Electrical and Information Engineering, Changchun Institute of Technology, 395 Kuan Ping Road, Changchun 130103, China – name: 3 Department of Advanced Sciences, Hosei University, Tokyo 184-8584, Japan; ikko@hosei.ac.jp |
| Author_xml | – sequence: 1 givenname: Kaiqiao orcidid: 0000-0002-8061-615X surname: Tian fullname: Tian, Kaiqiao – sequence: 2 givenname: Meiqi surname: Song fullname: Song, Meiqi – sequence: 3 givenname: Ka C. surname: Cheok fullname: Cheok, Ka C. – sequence: 4 givenname: Micho surname: Radovnikovich fullname: Radovnikovich, Micho – sequence: 5 givenname: Kazuyuki surname: Kobayashi fullname: Kobayashi, Kazuyuki – sequence: 6 givenname: Changqing orcidid: 0000-0003-0367-7757 surname: Cai fullname: Cai, Changqing |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40648134$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvEzEQgFeoiD7gwB9Alri0SCl-7uNURQmFSqlABHpdzdqzicuuHexdUP89TlOilgPywdbM588zIx9nB847zLLXjJ4LUdH3kSsmRFnkz7IjJrmclJzTg0fnw-w4xltKuUjYi-xQ0lyWTMij7MfSutXYQSA30I1I5qh9v_HRDtY7crq8mZ-RaxzW3pDWB7Kw8-lXAs6QGfQYgCzRxRS_HOOW3ya-wDBgcOQaBr1OcjLtVj7YYd2_zJ630EV89bCfZN8vP3ybfZosPn-8mk0XEy0LNky0MI1WlUIQWGgtsUDGjNSN4iU1KCWjsiqZgoYL3lKVG902pWhoa5SiFRUn2dXOazzc1ptgewh3tQdb3wd8WNUQBqs7rEVSFsA0b4yUVSVBVVVDiwbzHPIkTq53O9foNnD3G7puL2S03k6_3k8_wRc7eDM2PRqNbgjQPangacbZdb3yv2rGueKMy2Q4fTAE_3PEONS9jRq7Dhz6MaZ6eZXzopBb9O0_6K0fg0uDvaeYKirGE3W-o1aQ2rWu9elhnZbB3ur0jVqb4tNSFkqWklXpwpvHPeyL__tlEnC2A3TwMQZs_zOQP91TzgU |
| Cites_doi | 10.1109/LRA.2024.3455895 10.1109/ACCESS.2020.3010734 10.1109/ICIT52682.2021.9491732 10.1109/JSEN.2020.2966034 10.1109/TITS.2021.3071647 10.1007/s10462-022-10317-y 10.1016/j.robot.2018.11.002 10.1016/j.procs.2021.02.100 10.1090/stml/094 10.1016/j.neucom.2020.06.004 10.3390/s22155576 10.1109/ITSC48978.2021.9564700 10.1016/j.chemolab.2020.103981 10.3390/s24123878 10.1109/ITSC.2014.6957925 10.1109/TMM.2023.3277281 10.1109/ICCVW.2017.53 10.1109/CVPR52688.2022.01667 10.3390/s24123981 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s25133876 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest One Academic ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_32807a1c2bd44994a599b07be66a66dc 10.3390/s25133876 PMC12252124 A847548419 40648134 10_3390_s25133876 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: Key Project Jilin Province Science and Technology Development Plan grantid: 20230202038NC – fundername: High-end Foreign Experts Introduction Project of the Foreign Experts Bureau of the Department of Science and Technology of Jilin Province grantid: L202501, S202405 – fundername: High-end Foreign Experts Introduction Project of the Foreign Experts Bureau of the Department of Science and Technology of Jilin Province grantid: L202501; S202405 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c471t-c3dbc595ea3e7cc4e7e11d4cb5280de441049815ab232f056dcfb83b0fd550903 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:50:42 EDT 2025 Sun Oct 26 03:30:49 EDT 2025 Tue Sep 30 17:01:19 EDT 2025 Fri Sep 05 15:40:58 EDT 2025 Tue Oct 07 07:32:29 EDT 2025 Mon Oct 20 16:55:14 EDT 2025 Thu Jul 17 02:14:22 EDT 2025 Thu Oct 16 04:31:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | pattern matching error detection LiDAR and camera data sensor fusion gradient descent singular value decomposition |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-c3dbc595ea3e7cc4e7e11d4cb5280de441049815ab232f056dcfb83b0fd550903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0367-7757 0000-0002-8061-615X |
| OpenAccessLink | https://doaj.org/article/32807a1c2bd44994a599b07be66a66dc |
| PMID | 40648134 |
| PQID | 3229157912 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32807a1c2bd44994a599b07be66a66dc unpaywall_primary_10_3390_s25133876 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12252124 proquest_miscellaneous_3229627744 proquest_journals_3229157912 gale_infotracacademiconefile_A847548419 pubmed_primary_40648134 crossref_primary_10_3390_s25133876 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-21 |
| PublicationDateYYYYMMDD | 2025-06-21 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Berrio (ref_7) 2021; 23 Zhao (ref_6) 2023; 26 ref_13 ref_12 ref_10 ref_1 Li (ref_14) 2023; 56 He (ref_20) 2020; 200 Zhao (ref_3) 2020; 20 Materna (ref_11) 2014; 2014 ref_19 Caltagirone (ref_2) 2019; 111 ref_18 ref_17 Li (ref_8) 2020; 409 ref_16 Huang (ref_9) 2020; 8 Zhong (ref_4) 2021; 183 ref_5 Li (ref_15) 2024; 9 |
| References_xml | – volume: 9 start-page: 10073 year: 2024 ident: ref_15 article-title: Edgecalib: Multi-frame weighted edge features for automatic targetless lidar-camera calibration publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2024.3455895 – volume: 8 start-page: 134101 year: 2020 ident: ref_9 article-title: Improvements to target-based 3D LiDAR to camera calibration publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010734 – ident: ref_19 doi: 10.1109/ICIT52682.2021.9491732 – volume: 20 start-page: 4901 year: 2020 ident: ref_3 article-title: Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle applications publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2966034 – volume: 23 start-page: 7637 year: 2021 ident: ref_7 article-title: Camera-LIDAR integration: Probabilistic sensor fusion for semantic mapping publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3071647 – volume: 56 start-page: 9949 year: 2023 ident: ref_14 article-title: Automatic targetless LiDAR–camera calibration: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10317-y – volume: 111 start-page: 125 year: 2019 ident: ref_2 article-title: LIDAR–camera fusion for road detection using fully convolutional neural networks publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.11.002 – volume: 183 start-page: 579 year: 2021 ident: ref_4 article-title: A survey of LiDAR and camera fusion enhancement publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.02.100 – ident: ref_18 doi: 10.1090/stml/094 – volume: 409 start-page: 394 year: 2020 ident: ref_8 article-title: Building and optimization of 3D semantic map based on Lidar and camera fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.004 – ident: ref_12 doi: 10.3390/s22155576 – ident: ref_13 doi: 10.1109/ITSC48978.2021.9564700 – volume: 200 start-page: 103981 year: 2020 ident: ref_20 article-title: Novel soft sensor development using echo state network integrated with singular value decomposition: Application to complex chemical processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.103981 – volume: 2014 start-page: 135 year: 2014 ident: ref_11 article-title: Calibration of rgb camera with velodyne lidar publication-title: J. WSCG – ident: ref_16 doi: 10.3390/s24123878 – ident: ref_1 doi: 10.1109/ITSC.2014.6957925 – volume: 26 start-page: 1158 year: 2023 ident: ref_6 article-title: Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2023.3277281 – ident: ref_10 doi: 10.1109/ICCVW.2017.53 – ident: ref_5 doi: 10.1109/CVPR52688.2022.01667 – ident: ref_17 doi: 10.3390/s24123981 |
| SSID | ssj0023338 |
| Score | 2.454089 |
| Snippet | LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise... LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 3876 |
| SubjectTerms | Accuracy Algorithms Calibration Cameras Datasets Decomposition Driverless cars error detection gradient descent Kinematics LiDAR and camera data sensor fusion Methods Optical radar pattern matching Remote sensing Robotics Sensors singular value decomposition |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hXoAD4o2hoOUhAQer3ofX9jE0RBUiCBFa9Wbty21EcKo2FuLfM2M7lgNCXDhF8jrWZmZ29vs2428AXmW-UlxZE3Nr8hizZBZbFbLY-BBsVslKC3obef5JHx2rD6fp6ajVF9WEdfLAneEOJMm1GO6E9QrRuTJpUdgks0Fro7V3lH2TvNiSqZ5qSWRenY6QRFJ_cCWojUlOwiKj3acV6f8zFY_2ot_rJK839YX5-cOsVqNNaHYbbvXokU26Wd-Ba6G-CzdHmoL34NsCP6i2lJ2YVRPYNFDVeF-axd4sTqZv2bxtG80Qr7KPy-nkCzO1Z4eGzqfYAnktXp81dIzWDnxuJThrNsesTedVbLI6W18uN-ff78Px7P3Xw6O476gQO9yENrGT3rq0SIORIXMOnRI498rZFK3sA0IjJAw5T41FoFUhNvKusrm0SeWRyRSJfAB79boOj4AJn3CrjUfCYRU-vRXWr5T0WnlnOY_gxdbS5UUnnFEi4SB3lIM7InhHPhhuIK3r9gJGQNlHQPmvCIjgNXmwpBWJbnKmf7EA50naVuUEN2DkZYoXEexvnVz2S_UKHy8KnmYFFxE8H4ZxkdE_J6YO66a7RwtEyiqCh11MDHNGRKRyLnEk34mWnR-1O1Ivz1shb47JFKEDfvXlEFh_N9bj_2GsJ3BDUAfjRMeC78Pe5rIJTxFWbeyzdgX9AgrRH9s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest One Academic dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFH4q6QE4IHYMBQ2LBBysejzj7YBQ2jSqEImqhla9WbO5rQhOaGMh_j3veSMBwSmSx47G89Zv_OZ7AG8SW0gutfK5VqmPXjLxtXSJr6xzOilEEYd0GnkyjQ9P5Kez6GwLpt1ZGCqr7Hxi7ajtwtAe-S4qXsajJOPhx-V3n7pG0dfVroWGalsr2A81xdgN2A6JGWsA23sH06PjHoIJRGQNv5BAsL97HVJ7k5QIR9aiUk3e_7eLXotRf9ZP3qzKpfr5Q83na8FpfBfutFklGzZqcA-2XHkfbq9xDT6ArzP8oZpTdqrmlWMjR9XkbckWezc7Hb1nk7qdNMM8ln2-HA2PmSot21e0b8VmiHfx-rii7bV64Kim5izZBL057WOx4fwcV2x18e0hnIwPvuwf-m2nBd9gcFr5RlhtoixySrjEGBSW49xKo6MwDazDlAmBRMojpTEBKzBnsqbQqdBBYRHhZIF4BINyUbonwEIbcB0ri0BES_z3mnC_kMLG0hrNuQevupXOlw2hRo5AhMSR9-LwYI9k0N9AHNj1hcXVed6aVC6IyEdxE2orEbdJFWWZDhLt4ljFOEMP3pIEc7JUFJNR7YEDnCdxXuVDDMyI1yTPPNjphJy3Jnyd_1Y4D172w2h89EVFlW5RNffEIWbQ0oPHjU70c8ZMSaZc4Ei6oS0bL7U5Ul5e1ATfHJ0s6i8--rpXrH8v1tP_z_4Z3AqpZ3EQ-yHfgcHqqnLPMZFa6RetdfwChoAeGA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS0PCTi49j68tk_INEQVIlVFSNWerH25jRqcKLVB8OuZtR0rKUJC4hTJu3Z2PTM736xnvkXodWwKTriSPlEy8WGVjH3FbexLY62KC1YI6qqRx4fiYMo_nUQnG1X8Lq0SQvFZs0i7KiwfPFgY0CggLGBgusHSFO-_d3tJxJGTp-DhIf7ZERGg8QHamR4eZadNUVF3d0soxCC6Dy6pO88kcQwjG26oYev_c03ecEpXEyav1-VS_vwh5_MNbzS6jeR6Hm0SysVeXak9_esKxeP_TPQOutVBVZy1unUXXbPlPXRzg8DwPrqYwI9LZMXHcl5bPLQuRb3LA8NvJ8fDd3jcnFGNARzjz7Nh9gXL0uB96TbD8ASCaLg-qt3fNw1HDd9nicfgItzmGM7mZ4vVrDr_9gBNRx-_7h_43fENvgaPV_maGaWjNLKS2Vhr0ABLiOFaRTQJjQUcBlNKSCQVoLoCgJjRhUqYCgsDYVMasodoUC5K-xhhakKihDQQ3SgOT29Y_AvOjOBGK0I89HItzXzZsnTkEN04kee9yD30wcm57-CItZsLi9VZ3tlpzhw7kCSaKsPhhXMZpakKY2WFkAJG6KE3TktyZ_6gClp2VQwwTkeklWfg7SEI5CT10O5akfJuXbiEx4MIozgl1EMv-mawaPeZRpZ2Ubd9BAVYzj30qNW7fswAv3hCGLQkWxq5NantlnJ23rCGE1i5AafAra965f37y3ryT72eohvUnYccCp-SXTSoVrV9BiCtUs87O_wNUmo1zQ priority: 102 providerName: Unpaywall |
| Title | Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40648134 https://www.proquest.com/docview/3229157912 https://www.proquest.com/docview/3229627744 https://pubmed.ncbi.nlm.nih.gov/PMC12252124 https://www.mdpi.com/1424-8220/25/13/3876/pdf?version=1750499291 https://doaj.org/article/32807a1c2bd44994a599b07be66a66dc |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwEB7t8QA8IG4CS2UOcTwEYse5HhDqbresEK2qLV2Vp8iOnd0VIe12W8H-e2bSNGo5JF5SyU4s1zPjmc_HNwAvIpNLLrVyuVaxi7Nk5GppI1cZa3WU-3ko6DZyrx8ejeSncTDegtWx5noAL_8K7Sif1GhWvP15cfUBDf49IU6E7O8uBSUpQbN-Ob1wKZ8U7bvWyTW2YRd9VkJJHXqy2V8Qvl_luKZrXi66SG_JObTZ2oanqgj9_5y21_zW72cqry3Kqbr6oYpizWF1b8HNOtJk7aVq3IYtW96BG2v8g3fh2xB_6BwqO1HFwrKOpRPm9TEu9np40nnDelWKaYaxLft83mkfM1UadqBoLYsNEQNjeXdBS25VxaCi6yxZD2d4Wtti7eIUx2p-9v0ejLqHXw6O3Dr7gpuhw5q7mW90FiSBVb6NsgwFaDk3MtOBiD1jMYxCcBHzQGkMynKMo0yW69jXXm4Q9SSefx92yklpHwITxuM6VAbBiZbYekXCn0vfhNJkmnMHnq1GOp0uSTZSBCckjrQRhwP7JIPmBeLFrgoms9O0NrPUJ3IfxTOhjUQsJ1WQJNqLtA1DFWIPHXhFEkxJn1BMmaovIWA_iQcrbaOzRgwneeLA3krI6UorsXmR8CBKuHDgaVONBkm7LKq0k8XynVBgVC0deLDUiabPGD3JmPtYE29oy8af2qwpz88q0m-OEy-GGfjp80ax_j1Yj_6je4_huqBkxl7oCr4HO_PZwj7BCGuuW7AdjSN8xt2PLdjdP-wPjlvVakWrMiMsG_UH7a-_AOphKng |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcigcEDuGAsMmysGqZ_F2QCg0RClNKkTaKjczm9uK4IQmUdU_xW_kPdtxExDceorkcazxvO174zffI-R1bHPJpFY-0yrxwUvGvpYu9pV1Tse5yCOOp5H7-1H3UH4ehsM18mtxFgbLKhc-sXTUdmxwj3wbFC9lYZwy_mHy08euUfh1ddFCo1KLPXdxDinb9P1uG-T7hvPOp4Odrl93FfANOOKZb4TVJkxDp4SLjYGJOcasNDrkSWAdwAMAzQkLlQawkQM-sCbXidBBbgHNp4GA514j16UAXwL2Ew8vEzwB-V7FXiREGmxPOTZPSZDOZCnmla0B_g4ASxHwz-rMjXkxURfnajRaCn2d2-RWjVlpq1KyO2TNFXfJzSUmw3vk-wB-sKKVHqnR3NG2w1r1uiCMbg2O2u9ov2xWTQEl095pu_WVqsLSHYW7YnQA2TRc78xx864c-FISfxa0D7ECd8loa3QM8pid_LhPDq9kxR-Q9WJcuEeEchswHSkLaY6W8PSSzj-XwkbSGs2YR14uVjqbVHQdGaQ5KI6sEYdHPqIMmhuQYbu8MD47zmqDzQTSBClmuLYSskKpwjTVQaxdFKkIZuiRtyjBDP0AiMmo-jgDzBMZtbIWhH3IBiVLPbK5EHJWO4hpdqnOHnnRDINp4_caVbjxvLon4oDPpUceVjrRzBlwmEyYgJFkRVtWXmp1pDg9KenDGbhwACzw11eNYv17sR7_f_bPyUb3oN_Lerv7e0_IDY7dkYPI52yTrM_O5u4pQLaZflbaCSXfrtowfwPG5FTF |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VInE8IM5iKLBcAh6seA9fDwiFhqilTVWRtsqbu5fbiuCEJlbVv8avY8Z20gQEb32K5HGs8c71zXp2hpA3sc0lk1r5TKvEBy8Z-1q62FfWOR3nIo84nkbu7UabB_LrIByskF-zszBYVjnziZWjtiODe-QtULyUhXHKeCtvyiL2Ot1P458-TpDCL62zcRq1imy7i3NI3yYftzog67ecd7_sb2z6zYQB34BTnvpGWG3CNHRKuNgYYNIxZqXRIU8C6wAqAIBOWKg0AI8csII1uU6EDnILyD4NBDz3GrkeC5FiOWE8uEz2BOR-dScjIAatCcdBKgm2NlmIf9WYgL-DwUI0_LNS82ZZjNXFuRoOF8Jg9y650-BX2q4V7h5ZccV9cnuhq-ED8r0PP1jdSg_VsHS047BuvSkOo-_7h50PtFcNrqaAmOnOaaf9jarC0g2FO2S0D5k1XO-WuJFXEfaqJqAF7UHcwB0z2h4egzymJz8ekoMrWfFHZLUYFe4xodwGTEfKQsqjJTy9au2fS2EjaY1mzCOvZiudjevWHRmkPCiObC4Oj3xGGcxvwG7b1YXR2XHWGG8msGWQYoZrKyFDlCpMUx3E2kWRioBDj7xDCWboE0BMRjVHG4BP7K6VtQECQGYoWeqR9ZmQs8ZZTLJL1fbIyzkZzBy_3ajCjcr6nogDVpceWat1Ys4zYDKZMAGUZElbll5qmVKcnlStxBm4cwAv8NfXc8X692I9-T_3L8gNMMlsZ2t3-ym5xXFQchD5nK2T1elZ6Z4Bepvq55WZUHJ01Xb5G8obWQg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS0PCTi49j68tk_INEQVIlVFSNWerH25jRqcKLVB8OuZtR0rKUJC4hTJu3Z2PTM736xnvkXodWwKTriSPlEy8WGVjH3FbexLY62KC1YI6qqRx4fiYMo_nUQnG1X8Lq0SQvFZs0i7KiwfPFgY0CggLGBgusHSFO-_d3tJxJGTp-DhIf7ZERGg8QHamR4eZadNUVF3d0soxCC6Dy6pO88kcQwjG26oYev_c03ecEpXEyav1-VS_vwh5_MNbzS6jeR6Hm0SysVeXak9_esKxeP_TPQOutVBVZy1unUXXbPlPXRzg8DwPrqYwI9LZMXHcl5bPLQuRb3LA8NvJ8fDd3jcnFGNARzjz7Nh9gXL0uB96TbD8ASCaLg-qt3fNw1HDd9nicfgItzmGM7mZ4vVrDr_9gBNRx-_7h_43fENvgaPV_maGaWjNLKS2Vhr0ABLiOFaRTQJjQUcBlNKSCQVoLoCgJjRhUqYCgsDYVMasodoUC5K-xhhakKihDQQ3SgOT29Y_AvOjOBGK0I89HItzXzZsnTkEN04kee9yD30wcm57-CItZsLi9VZ3tlpzhw7kCSaKsPhhXMZpakKY2WFkAJG6KE3TktyZ_6gClp2VQwwTkeklWfg7SEI5CT10O5akfJuXbiEx4MIozgl1EMv-mawaPeZRpZ2Ubd9BAVYzj30qNW7fswAv3hCGLQkWxq5NantlnJ23rCGE1i5AafAra965f37y3ryT72eohvUnYccCp-SXTSoVrV9BiCtUs87O_wNUmo1zQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+Value+Decomposition+%28SVD%29+Method+for+LiDAR+and+Camera+Sensor+Fusion+and+Pattern+Matching+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tian%2C+Kaiqiao&rft.au=Song%2C+Meiqi&rft.au=Cheok%2C+Ka+C&rft.au=Radovnikovich%2C+Micho&rft.date=2025-06-21&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=13&rft_id=info:doi/10.3390%2Fs25133876&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |