Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm

LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 13; p. 3876
Main Authors Tian, Kaiqiao, Song, Meiqi, Cheok, Ka C., Radovnikovich, Micho, Kobayashi, Kazuyuki, Cai, Changqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25133876

Cover

Abstract LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift.
AbstractList LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift.
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features-such as object contours and convex hulls-across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift.LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features-such as object contours and convex hulls-across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift.
Audience Academic
Author Cheok, Ka C.
Song, Meiqi
Radovnikovich, Micho
Tian, Kaiqiao
Kobayashi, Kazuyuki
Cai, Changqing
AuthorAffiliation 4 College of Electrical and Information Engineering, Changchun Institute of Technology, 395 Kuan Ping Road, Changchun 130103, China
2 Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA; msong@oakland.edu
3 Department of Advanced Sciences, Hosei University, Tokyo 184-8584, Japan; ikko@hosei.ac.jp
1 Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; tian2@oakland.edu (K.T.); cheok@oakland.edu (K.C.C.); mtradovn@oakland.edu (M.R.)
AuthorAffiliation_xml – name: 1 Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; tian2@oakland.edu (K.T.); cheok@oakland.edu (K.C.C.); mtradovn@oakland.edu (M.R.)
– name: 2 Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA; msong@oakland.edu
– name: 4 College of Electrical and Information Engineering, Changchun Institute of Technology, 395 Kuan Ping Road, Changchun 130103, China
– name: 3 Department of Advanced Sciences, Hosei University, Tokyo 184-8584, Japan; ikko@hosei.ac.jp
Author_xml – sequence: 1
  givenname: Kaiqiao
  orcidid: 0000-0002-8061-615X
  surname: Tian
  fullname: Tian, Kaiqiao
– sequence: 2
  givenname: Meiqi
  surname: Song
  fullname: Song, Meiqi
– sequence: 3
  givenname: Ka C.
  surname: Cheok
  fullname: Cheok, Ka C.
– sequence: 4
  givenname: Micho
  surname: Radovnikovich
  fullname: Radovnikovich, Micho
– sequence: 5
  givenname: Kazuyuki
  surname: Kobayashi
  fullname: Kobayashi, Kazuyuki
– sequence: 6
  givenname: Changqing
  orcidid: 0000-0003-0367-7757
  surname: Cai
  fullname: Cai, Changqing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40648134$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEQgFeoiD7gwB9Alri0SCl-7uNURQmFSqlABHpdzdqzicuuHexdUP89TlOilgPywdbM588zIx9nB847zLLXjJ4LUdH3kSsmRFnkz7IjJrmclJzTg0fnw-w4xltKuUjYi-xQ0lyWTMij7MfSutXYQSA30I1I5qh9v_HRDtY7crq8mZ-RaxzW3pDWB7Kw8-lXAs6QGfQYgCzRxRS_HOOW3ya-wDBgcOQaBr1OcjLtVj7YYd2_zJ630EV89bCfZN8vP3ybfZosPn-8mk0XEy0LNky0MI1WlUIQWGgtsUDGjNSN4iU1KCWjsiqZgoYL3lKVG902pWhoa5SiFRUn2dXOazzc1ptgewh3tQdb3wd8WNUQBqs7rEVSFsA0b4yUVSVBVVVDiwbzHPIkTq53O9foNnD3G7puL2S03k6_3k8_wRc7eDM2PRqNbgjQPangacbZdb3yv2rGueKMy2Q4fTAE_3PEONS9jRq7Dhz6MaZ6eZXzopBb9O0_6K0fg0uDvaeYKirGE3W-o1aQ2rWu9elhnZbB3ur0jVqb4tNSFkqWklXpwpvHPeyL__tlEnC2A3TwMQZs_zOQP91TzgU
Cites_doi 10.1109/LRA.2024.3455895
10.1109/ACCESS.2020.3010734
10.1109/ICIT52682.2021.9491732
10.1109/JSEN.2020.2966034
10.1109/TITS.2021.3071647
10.1007/s10462-022-10317-y
10.1016/j.robot.2018.11.002
10.1016/j.procs.2021.02.100
10.1090/stml/094
10.1016/j.neucom.2020.06.004
10.3390/s22155576
10.1109/ITSC48978.2021.9564700
10.1016/j.chemolab.2020.103981
10.3390/s24123878
10.1109/ITSC.2014.6957925
10.1109/TMM.2023.3277281
10.1109/ICCVW.2017.53
10.1109/CVPR52688.2022.01667
10.3390/s24123981
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25133876
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest One Academic
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_32807a1c2bd44994a599b07be66a66dc
10.3390/s25133876
PMC12252124
A847548419
40648134
10_3390_s25133876
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Key Project Jilin Province Science and Technology Development Plan
  grantid: 20230202038NC
– fundername: High-end Foreign Experts Introduction Project of the Foreign Experts Bureau of the Department of Science and Technology of Jilin Province
  grantid: L202501, S202405
– fundername: High-end Foreign Experts Introduction Project of the Foreign Experts Bureau of the Department of Science and Technology of Jilin Province
  grantid: L202501; S202405
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-c3dbc595ea3e7cc4e7e11d4cb5280de441049815ab232f056dcfb83b0fd550903
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:42 EDT 2025
Sun Oct 26 03:30:49 EDT 2025
Tue Sep 30 17:01:19 EDT 2025
Fri Sep 05 15:40:58 EDT 2025
Tue Oct 07 07:32:29 EDT 2025
Mon Oct 20 16:55:14 EDT 2025
Thu Jul 17 02:14:22 EDT 2025
Thu Oct 16 04:31:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords pattern matching
error detection
LiDAR and camera data sensor fusion
gradient descent
singular value decomposition
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-c3dbc595ea3e7cc4e7e11d4cb5280de441049815ab232f056dcfb83b0fd550903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0367-7757
0000-0002-8061-615X
OpenAccessLink https://doaj.org/article/32807a1c2bd44994a599b07be66a66dc
PMID 40648134
PQID 3229157912
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_32807a1c2bd44994a599b07be66a66dc
unpaywall_primary_10_3390_s25133876
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12252124
proquest_miscellaneous_3229627744
proquest_journals_3229157912
gale_infotracacademiconefile_A847548419
pubmed_primary_40648134
crossref_primary_10_3390_s25133876
PublicationCentury 2000
PublicationDate 2025-06-21
PublicationDateYYYYMMDD 2025-06-21
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-21
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Berrio (ref_7) 2021; 23
Zhao (ref_6) 2023; 26
ref_13
ref_12
ref_10
ref_1
Li (ref_14) 2023; 56
He (ref_20) 2020; 200
Zhao (ref_3) 2020; 20
Materna (ref_11) 2014; 2014
ref_19
Caltagirone (ref_2) 2019; 111
ref_18
ref_17
Li (ref_8) 2020; 409
ref_16
Huang (ref_9) 2020; 8
Zhong (ref_4) 2021; 183
ref_5
Li (ref_15) 2024; 9
References_xml – volume: 9
  start-page: 10073
  year: 2024
  ident: ref_15
  article-title: Edgecalib: Multi-frame weighted edge features for automatic targetless lidar-camera calibration
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2024.3455895
– volume: 8
  start-page: 134101
  year: 2020
  ident: ref_9
  article-title: Improvements to target-based 3D LiDAR to camera calibration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010734
– ident: ref_19
  doi: 10.1109/ICIT52682.2021.9491732
– volume: 20
  start-page: 4901
  year: 2020
  ident: ref_3
  article-title: Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2966034
– volume: 23
  start-page: 7637
  year: 2021
  ident: ref_7
  article-title: Camera-LIDAR integration: Probabilistic sensor fusion for semantic mapping
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3071647
– volume: 56
  start-page: 9949
  year: 2023
  ident: ref_14
  article-title: Automatic targetless LiDAR–camera calibration: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10317-y
– volume: 111
  start-page: 125
  year: 2019
  ident: ref_2
  article-title: LIDAR–camera fusion for road detection using fully convolutional neural networks
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.11.002
– volume: 183
  start-page: 579
  year: 2021
  ident: ref_4
  article-title: A survey of LiDAR and camera fusion enhancement
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.02.100
– ident: ref_18
  doi: 10.1090/stml/094
– volume: 409
  start-page: 394
  year: 2020
  ident: ref_8
  article-title: Building and optimization of 3D semantic map based on Lidar and camera fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.004
– ident: ref_12
  doi: 10.3390/s22155576
– ident: ref_13
  doi: 10.1109/ITSC48978.2021.9564700
– volume: 200
  start-page: 103981
  year: 2020
  ident: ref_20
  article-title: Novel soft sensor development using echo state network integrated with singular value decomposition: Application to complex chemical processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.103981
– volume: 2014
  start-page: 135
  year: 2014
  ident: ref_11
  article-title: Calibration of rgb camera with velodyne lidar
  publication-title: J. WSCG
– ident: ref_16
  doi: 10.3390/s24123878
– ident: ref_1
  doi: 10.1109/ITSC.2014.6957925
– volume: 26
  start-page: 1158
  year: 2023
  ident: ref_6
  article-title: Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2023.3277281
– ident: ref_10
  doi: 10.1109/ICCVW.2017.53
– ident: ref_5
  doi: 10.1109/CVPR52688.2022.01667
– ident: ref_17
  doi: 10.3390/s24123981
SSID ssj0023338
Score 2.454089
Snippet LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise...
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities-LiDAR provides precise...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3876
SubjectTerms Accuracy
Algorithms
Calibration
Cameras
Datasets
Decomposition
Driverless cars
error detection
gradient descent
Kinematics
LiDAR and camera data sensor fusion
Methods
Optical radar
pattern matching
Remote sensing
Robotics
Sensors
singular value decomposition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hXoAD4o2hoOUhAQer3ofX9jE0RBUiCBFa9Wbty21EcKo2FuLfM2M7lgNCXDhF8jrWZmZ29vs2428AXmW-UlxZE3Nr8hizZBZbFbLY-BBsVslKC3obef5JHx2rD6fp6ajVF9WEdfLAneEOJMm1GO6E9QrRuTJpUdgks0Fro7V3lH2TvNiSqZ5qSWRenY6QRFJ_cCWojUlOwiKj3acV6f8zFY_2ot_rJK839YX5-cOsVqNNaHYbbvXokU26Wd-Ba6G-CzdHmoL34NsCP6i2lJ2YVRPYNFDVeF-axd4sTqZv2bxtG80Qr7KPy-nkCzO1Z4eGzqfYAnktXp81dIzWDnxuJThrNsesTedVbLI6W18uN-ff78Px7P3Xw6O476gQO9yENrGT3rq0SIORIXMOnRI498rZFK3sA0IjJAw5T41FoFUhNvKusrm0SeWRyRSJfAB79boOj4AJn3CrjUfCYRU-vRXWr5T0WnlnOY_gxdbS5UUnnFEi4SB3lIM7InhHPhhuIK3r9gJGQNlHQPmvCIjgNXmwpBWJbnKmf7EA50naVuUEN2DkZYoXEexvnVz2S_UKHy8KnmYFFxE8H4ZxkdE_J6YO66a7RwtEyiqCh11MDHNGRKRyLnEk34mWnR-1O1Ivz1shb47JFKEDfvXlEFh_N9bj_2GsJ3BDUAfjRMeC78Pe5rIJTxFWbeyzdgX9AgrRH9s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest One Academic
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFH4q6QE4IHYMBQ2LBBysejzj7YBQ2jSqEImqhla9WbO5rQhOaGMh_j3veSMBwSmSx47G89Zv_OZ7AG8SW0gutfK5VqmPXjLxtXSJr6xzOilEEYd0GnkyjQ9P5Kez6GwLpt1ZGCqr7Hxi7ajtwtAe-S4qXsajJOPhx-V3n7pG0dfVroWGalsr2A81xdgN2A6JGWsA23sH06PjHoIJRGQNv5BAsL97HVJ7k5QIR9aiUk3e_7eLXotRf9ZP3qzKpfr5Q83na8FpfBfutFklGzZqcA-2XHkfbq9xDT6ArzP8oZpTdqrmlWMjR9XkbckWezc7Hb1nk7qdNMM8ln2-HA2PmSot21e0b8VmiHfx-rii7bV64Kim5izZBL057WOx4fwcV2x18e0hnIwPvuwf-m2nBd9gcFr5RlhtoixySrjEGBSW49xKo6MwDazDlAmBRMojpTEBKzBnsqbQqdBBYRHhZIF4BINyUbonwEIbcB0ri0BES_z3mnC_kMLG0hrNuQevupXOlw2hRo5AhMSR9-LwYI9k0N9AHNj1hcXVed6aVC6IyEdxE2orEbdJFWWZDhLt4ljFOEMP3pIEc7JUFJNR7YEDnCdxXuVDDMyI1yTPPNjphJy3Jnyd_1Y4D172w2h89EVFlW5RNffEIWbQ0oPHjU70c8ZMSaZc4Ei6oS0bL7U5Ul5e1ATfHJ0s6i8--rpXrH8v1tP_z_4Z3AqpZ3EQ-yHfgcHqqnLPMZFa6RetdfwChoAeGA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS0PCTi49j68tk_INEQVIlVFSNWerH25jRqcKLVB8OuZtR0rKUJC4hTJu3Z2PTM736xnvkXodWwKTriSPlEy8WGVjH3FbexLY62KC1YI6qqRx4fiYMo_nUQnG1X8Lq0SQvFZs0i7KiwfPFgY0CggLGBgusHSFO-_d3tJxJGTp-DhIf7ZERGg8QHamR4eZadNUVF3d0soxCC6Dy6pO88kcQwjG26oYev_c03ecEpXEyav1-VS_vwh5_MNbzS6jeR6Hm0SysVeXak9_esKxeP_TPQOutVBVZy1unUXXbPlPXRzg8DwPrqYwI9LZMXHcl5bPLQuRb3LA8NvJ8fDd3jcnFGNARzjz7Nh9gXL0uB96TbD8ASCaLg-qt3fNw1HDd9nicfgItzmGM7mZ4vVrDr_9gBNRx-_7h_43fENvgaPV_maGaWjNLKS2Vhr0ABLiOFaRTQJjQUcBlNKSCQVoLoCgJjRhUqYCgsDYVMasodoUC5K-xhhakKihDQQ3SgOT29Y_AvOjOBGK0I89HItzXzZsnTkEN04kee9yD30wcm57-CItZsLi9VZ3tlpzhw7kCSaKsPhhXMZpakKY2WFkAJG6KE3TktyZ_6gClp2VQwwTkeklWfg7SEI5CT10O5akfJuXbiEx4MIozgl1EMv-mawaPeZRpZ2Ubd9BAVYzj30qNW7fswAv3hCGLQkWxq5NantlnJ23rCGE1i5AafAra965f37y3ryT72eohvUnYccCp-SXTSoVrV9BiCtUs87O_wNUmo1zQ
  priority: 102
  providerName: Unpaywall
Title Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/40648134
https://www.proquest.com/docview/3229157912
https://www.proquest.com/docview/3229627744
https://pubmed.ncbi.nlm.nih.gov/PMC12252124
https://www.mdpi.com/1424-8220/25/13/3876/pdf?version=1750499291
https://doaj.org/article/32807a1c2bd44994a599b07be66a66dc
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwEB7t8QA8IG4CS2UOcTwEYse5HhDqbresEK2qLV2Vp8iOnd0VIe12W8H-e2bSNGo5JF5SyU4s1zPjmc_HNwAvIpNLLrVyuVaxi7Nk5GppI1cZa3WU-3ko6DZyrx8ejeSncTDegtWx5noAL_8K7Sif1GhWvP15cfUBDf49IU6E7O8uBSUpQbN-Ob1wKZ8U7bvWyTW2YRd9VkJJHXqy2V8Qvl_luKZrXi66SG_JObTZ2oanqgj9_5y21_zW72cqry3Kqbr6oYpizWF1b8HNOtJk7aVq3IYtW96BG2v8g3fh2xB_6BwqO1HFwrKOpRPm9TEu9np40nnDelWKaYaxLft83mkfM1UadqBoLYsNEQNjeXdBS25VxaCi6yxZD2d4Wtti7eIUx2p-9v0ejLqHXw6O3Dr7gpuhw5q7mW90FiSBVb6NsgwFaDk3MtOBiD1jMYxCcBHzQGkMynKMo0yW69jXXm4Q9SSefx92yklpHwITxuM6VAbBiZbYekXCn0vfhNJkmnMHnq1GOp0uSTZSBCckjrQRhwP7JIPmBeLFrgoms9O0NrPUJ3IfxTOhjUQsJ1WQJNqLtA1DFWIPHXhFEkxJn1BMmaovIWA_iQcrbaOzRgwneeLA3krI6UorsXmR8CBKuHDgaVONBkm7LKq0k8XynVBgVC0deLDUiabPGD3JmPtYE29oy8af2qwpz88q0m-OEy-GGfjp80ax_j1Yj_6je4_huqBkxl7oCr4HO_PZwj7BCGuuW7AdjSN8xt2PLdjdP-wPjlvVakWrMiMsG_UH7a-_AOphKng
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcigcEDuGAsMmysGqZ_F2QCg0RClNKkTaKjczm9uK4IQmUdU_xW_kPdtxExDceorkcazxvO174zffI-R1bHPJpFY-0yrxwUvGvpYu9pV1Tse5yCOOp5H7-1H3UH4ehsM18mtxFgbLKhc-sXTUdmxwj3wbFC9lYZwy_mHy08euUfh1ddFCo1KLPXdxDinb9P1uG-T7hvPOp4Odrl93FfANOOKZb4TVJkxDp4SLjYGJOcasNDrkSWAdwAMAzQkLlQawkQM-sCbXidBBbgHNp4GA514j16UAXwL2Ew8vEzwB-V7FXiREGmxPOTZPSZDOZCnmla0B_g4ASxHwz-rMjXkxURfnajRaCn2d2-RWjVlpq1KyO2TNFXfJzSUmw3vk-wB-sKKVHqnR3NG2w1r1uiCMbg2O2u9ov2xWTQEl095pu_WVqsLSHYW7YnQA2TRc78xx864c-FISfxa0D7ECd8loa3QM8pid_LhPDq9kxR-Q9WJcuEeEchswHSkLaY6W8PSSzj-XwkbSGs2YR14uVjqbVHQdGaQ5KI6sEYdHPqIMmhuQYbu8MD47zmqDzQTSBClmuLYSskKpwjTVQaxdFKkIZuiRtyjBDP0AiMmo-jgDzBMZtbIWhH3IBiVLPbK5EHJWO4hpdqnOHnnRDINp4_caVbjxvLon4oDPpUceVjrRzBlwmEyYgJFkRVtWXmp1pDg9KenDGbhwACzw11eNYv17sR7_f_bPyUb3oN_Lerv7e0_IDY7dkYPI52yTrM_O5u4pQLaZflbaCSXfrtowfwPG5FTF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VInE8IM5iKLBcAh6seA9fDwiFhqilTVWRtsqbu5fbiuCEJlbVv8avY8Z20gQEb32K5HGs8c71zXp2hpA3sc0lk1r5TKvEBy8Z-1q62FfWOR3nIo84nkbu7UabB_LrIByskF-zszBYVjnziZWjtiODe-QtULyUhXHKeCtvyiL2Ot1P458-TpDCL62zcRq1imy7i3NI3yYftzog67ecd7_sb2z6zYQB34BTnvpGWG3CNHRKuNgYYNIxZqXRIU8C6wAqAIBOWKg0AI8csII1uU6EDnILyD4NBDz3GrkeC5FiOWE8uEz2BOR-dScjIAatCcdBKgm2NlmIf9WYgL-DwUI0_LNS82ZZjNXFuRoOF8Jg9y650-BX2q4V7h5ZccV9cnuhq-ED8r0PP1jdSg_VsHS047BuvSkOo-_7h50PtFcNrqaAmOnOaaf9jarC0g2FO2S0D5k1XO-WuJFXEfaqJqAF7UHcwB0z2h4egzymJz8ekoMrWfFHZLUYFe4xodwGTEfKQsqjJTy9au2fS2EjaY1mzCOvZiudjevWHRmkPCiObC4Oj3xGGcxvwG7b1YXR2XHWGG8msGWQYoZrKyFDlCpMUx3E2kWRioBDj7xDCWboE0BMRjVHG4BP7K6VtQECQGYoWeqR9ZmQs8ZZTLJL1fbIyzkZzBy_3ajCjcr6nogDVpceWat1Ys4zYDKZMAGUZElbll5qmVKcnlStxBm4cwAv8NfXc8X692I9-T_3L8gNMMlsZ2t3-ym5xXFQchD5nK2T1elZ6Z4Bepvq55WZUHJ01Xb5G8obWQg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAceD8MBS0PCTi49j68tk_INEQVIlVFSNWerH25jRqcKLVB8OuZtR0rKUJC4hTJu3Z2PTM736xnvkXodWwKTriSPlEy8WGVjH3FbexLY62KC1YI6qqRx4fiYMo_nUQnG1X8Lq0SQvFZs0i7KiwfPFgY0CggLGBgusHSFO-_d3tJxJGTp-DhIf7ZERGg8QHamR4eZadNUVF3d0soxCC6Dy6pO88kcQwjG26oYev_c03ecEpXEyav1-VS_vwh5_MNbzS6jeR6Hm0SysVeXak9_esKxeP_TPQOutVBVZy1unUXXbPlPXRzg8DwPrqYwI9LZMXHcl5bPLQuRb3LA8NvJ8fDd3jcnFGNARzjz7Nh9gXL0uB96TbD8ASCaLg-qt3fNw1HDd9nicfgItzmGM7mZ4vVrDr_9gBNRx-_7h_43fENvgaPV_maGaWjNLKS2Vhr0ABLiOFaRTQJjQUcBlNKSCQVoLoCgJjRhUqYCgsDYVMasodoUC5K-xhhakKihDQQ3SgOT29Y_AvOjOBGK0I89HItzXzZsnTkEN04kee9yD30wcm57-CItZsLi9VZ3tlpzhw7kCSaKsPhhXMZpakKY2WFkAJG6KE3TktyZ_6gClp2VQwwTkeklWfg7SEI5CT10O5akfJuXbiEx4MIozgl1EMv-mawaPeZRpZ2Ubd9BAVYzj30qNW7fswAv3hCGLQkWxq5NantlnJ23rCGE1i5AafAra965f37y3ryT72eohvUnYccCp-SXTSoVrV9BiCtUs87O_wNUmo1zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+Value+Decomposition+%28SVD%29+Method+for+LiDAR+and+Camera+Sensor+Fusion+and+Pattern+Matching+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Tian%2C+Kaiqiao&rft.au=Song%2C+Meiqi&rft.au=Cheok%2C+Ka+C&rft.au=Radovnikovich%2C+Micho&rft.date=2025-06-21&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=13&rft_id=info:doi/10.3390%2Fs25133876&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon