Singular Value Decomposition (SVD) Method for LiDAR and Camera Sensor Fusion and Pattern Matching Algorithm
LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 13; p. 3876 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
21.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25133876 |
Cover
| Summary: | LiDAR and camera sensors are widely utilized in autonomous vehicles (AVs) and robotics due to their complementary sensing capabilities—LiDAR provides precise depth information, while cameras capture rich visual context. However, effective multi-sensor fusion remains challenging due to discrepancies in resolution, data format, and viewpoint. In this paper, we propose a robust pattern matching algorithm that leverages singular value decomposition (SVD) and gradient descent (GD) to align geometric features—such as object contours and convex hulls—across LiDAR and camera modalities. Unlike traditional calibration methods that require manual targets, our approach is targetless, extracting matched patterns from projected LiDAR point clouds and 2D image segments. The algorithm computes the optimal transformation matrix between sensors, correcting misalignments in rotation, translation, and scale. Experimental results on a vehicle-mounted sensing platform demonstrate an alignment accuracy improvement of up to 85%, with the final projection error reduced to less than 1 pixel. This pattern-based SVD-GD framework offers a practical solution for maintaining reliable cross-sensor alignment under calibration drift, enabling real-time perception systems to operate robustly without recalibration. This method provides a practical solution for maintaining reliable sensor fusion in autonomous driving applications subject to long-term calibration drift. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25133876 |