A1 receptor mediated adenosinergic regulation of perifornical–lateral hypothalamic area neurons in freely behaving rats
Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. A...
        Saved in:
      
    
          | Published in | Neuroscience Vol. 167; no. 1; pp. 40 - 48 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier
    
        28.04.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0306-4522 1873-7544 1873-7544  | 
| DOI | 10.1016/j.neuroscience.2010.01.044 | 
Cover
| Abstract | Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6 -cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep–wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep–wake discharge activity of PF-LHA neurons. Doses of CPA (50 μM) and CPDX (50 μM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96–104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. | 
    
|---|---|
| AbstractList | Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6 -cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep–wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep–wake discharge activity of PF-LHA neurons. Doses of CPA (50 μM) and CPDX (50 μM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96–104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 I14M) and CPDX (50 I14M) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep. The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50μM) and CPDX (50μM) that suppressed and induced arousal, respectively, in our earlier study (Alam et al., 2009), significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.  | 
    
| Author | Rai, S Alam, M.A McGinty, D Alam, M.N Szymusiak, R Kumar, S  | 
    
| AuthorAffiliation | 1 Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA 2 Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA 3 Department of Neurobiology, School of Medicine, University of California, Los Angeles, California, USA 4 Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA  | 
    
| AuthorAffiliation_xml | – name: 1 Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA – name: 3 Department of Neurobiology, School of Medicine, University of California, Los Angeles, California, USA – name: 4 Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA – name: 2 Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA  | 
    
| Author_xml | – sequence: 1 fullname: Rai, S – sequence: 2 fullname: Kumar, S – sequence: 3 fullname: Alam, M.A – sequence: 4 fullname: Szymusiak, R – sequence: 5 fullname: McGinty, D – sequence: 6 fullname: Alam, M.N  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22773721$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20109537$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNUsmOEzEQtdAgZoFfQBYS4pTgtd3NATEasUkjcQDOVrW7OnHo2MHujpQb_8Af8iU4mTAMXMAXW3pLlaveOTkJMSAhTzibc8ar56t5wCnF7DwGh3PBCsD4nCl1j5zx2siZ0UqdkDMmWTVTWohTcp7zipWjlXxATveSRktzRnaXnCZ0uBljomvsPIzYUegwxOwDpoV3BV9MA4w-Bhp7usHk-5iCdzD8-Pa9AJhgoMvdJo5LGGBdFJAQ6KHJkKkPtE-Iw462uIStDwuaYMwPyf0ehoyPjvcF-fzm9aerd7PrD2_fX11ez5wyfJwZpkRnnFHYAFedanteKSF0U7fa1dqIprxaKB9jrex7AdCB1rLSjRGmqaS8IC9vfDdTWz7oMIylX7tJfg1pZyN4-ycS_NIu4taKWglWq2Lw7GiQ4tcJ82jXPjscBggYp2yNqhiTxph_M6WUmnFTFebju03ddvNrMYXw9EiAXAbdJwjO5988UcoZwQvvxQ3PlUDkhP0thTO7T4td2btpOVSwjNuSliJ-9ZfY-fGw6DIIP_yfxXG6WFa49ZisG_whG19wh3kVpxTKdi23WVhmP-4juU8k34exEbX8CcZF5SM | 
    
| CODEN | NRSCDN | 
    
| CitedBy_id | crossref_primary_10_1002_advs_202407706 crossref_primary_10_1007_s12264_013_1442_8 crossref_primary_10_1016_j_conb_2013_04_010 crossref_primary_10_1038_s41401_024_01443_0 crossref_primary_10_1155_2019_2389485 crossref_primary_10_1152_jn_00675_2016 crossref_primary_10_5665_sleep_3680 crossref_primary_10_5665_sleep_3490 crossref_primary_10_1152_physrev_00032_2011 crossref_primary_10_1016_j_jns_2016_01_031 crossref_primary_10_1016_j_sleep_2024_02_012 crossref_primary_10_1016_j_neuroscience_2012_06_014 crossref_primary_10_1111_jnc_14100 crossref_primary_10_1152_ajpregu_00402_2012 crossref_primary_10_1016_j_cub_2019_05_009 crossref_primary_10_1016_j_neuroscience_2011_01_052 crossref_primary_10_5665_sleep_2316 crossref_primary_10_1007_s40675_014_0007_3 crossref_primary_10_1016_j_pneurobio_2011_08_006 crossref_primary_10_3389_fnsys_2015_00009 crossref_primary_10_1007_s40675_015_0013_0 crossref_primary_10_1134_S1819712418010130 crossref_primary_10_1016_j_brainres_2011_10_018 crossref_primary_10_3724_SP_J_1260_2011_00005  | 
    
| Cites_doi | 10.1523/JNEUROSCI.2604-09.2009 10.1016/j.pneurobio.2008.08.003 10.1523/JNEUROSCI.20-20-07760.2000 10.1111/j.1460-9568.2006.05268.x 10.1523/JNEUROSCI.21-05-01656.2001 10.1016/j.pneurobio.2004.06.004 10.1113/jphysiol.2001.012888 10.1016/0893-133X(94)00079-F 10.1523/JNEUROSCI.22-21-09453.2002 10.1152/jn.00873.2006 10.1016/0165-1838(81)90083-7 10.1016/S0166-4328(98)00106-5 10.1016/j.neubiorev.2007.02.004 10.1016/S0006-8993(02)02873-1 10.1111/j.1460-9568.2004.03093.x 10.1016/0361-9230(89)90080-4 10.1002/cne.903190204 10.1016/0166-4328(95)00017-N 10.1016/j.brainres.2009.09.066 10.1016/S0306-4522(03)00173-8 10.1016/S0006-8993(00)03015-8 10.1097/00001756-200011090-00004 10.1385/MN:29:1:41 10.1016/0301-0082(94)00057-O 10.1016/j.neuroscience.2008.01.017 10.1113/jphysiol.2004.076927 10.1146/annurev.neuro.24.1.31 10.1523/JNEUROSCI.1887-05.2005 10.1016/j.neuron.2005.04.035 10.1073/pnas.0811400106 10.1016/S0092-8674(00)81965-0 10.1111/j.1469-7793.1999.00679.x 10.1016/S0306-4522(03)00334-8 10.1016/j.sleep.2007.03.005 10.1016/0006-8993(95)00590-M 10.1097/00001756-200507130-00008 10.1016/S0896-6273(00)00058-1 10.1152/ajpcell.00055.2002 10.1152/ajpregu.00247.2005 10.1016/j.peptides.2009.07.022 10.1126/science.276.5316.1265 10.1016/j.neulet.2008.05.042 10.1523/JNEUROSCI.18-23-09996.1998 10.1196/annals.1417.027 10.1016/j.yfrne.2007.08.001 10.1038/79690 10.1016/j.npep.2007.01.003 10.1002/(SICI)1096-9861(19981109)401:1<89::AID-CNE6>3.0.CO;2-X 10.1523/JNEUROSCI.3498-06.2007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 INIST-CNRS Published by Elsevier Ltd.  | 
    
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Published by Elsevier Ltd.  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM  | 
    
| DOI | 10.1016/j.neuroscience.2010.01.044 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1873-7544 | 
    
| EndPage | 48 | 
    
| ExternalDocumentID | PMC2842084 20109537 22773721 10_1016_j_neuroscience_2010_01_044 1_s2_0_S0306452210000928  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH063323 – fundername: NIMH NIH HHS grantid: R01 MH075076 – fundername: NINDS NIH HHS grantid: NS-050939 – fundername: NINDS NIH HHS grantid: R01 NS050939 – fundername: NIMH NIH HHS grantid: MH075076 – fundername: NIMH NIH HHS grantid: MH63323  | 
    
| GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEVXI AFCTW AFJKZ AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K UNMZH WUQ X7M YYP Z5R ZGI ZXP ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM  | 
    
| ID | FETCH-LOGICAL-c471t-7042d7c74e9a14d4bf16422598b5c8572998bba0540b3ff2aada5536597279633 | 
    
| ISSN | 0306-4522 1873-7544  | 
    
| IngestDate | Tue Sep 30 16:58:40 EDT 2025 Thu Oct 02 11:08:31 EDT 2025 Sun Sep 28 06:45:46 EDT 2025 Mon Jul 21 05:49:02 EDT 2025 Mon Jul 21 09:14:12 EDT 2025 Wed Oct 01 03:18:50 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Sun Feb 23 10:18:49 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | NonREM posterior–lateral hypothalamus melanin-concentrating hormone electromyogram sleep perifornical–lateral hypothalamus orexin perifornical–lateral hypothalamic area HCRT PF-LHA adenosine A 1 receptor CPDX EMG N 6-cyclopentyladenosine, an A 1 receptor agonist TBS EEG non-rapid eye movement sleep Fos-IR artificial cerebrospinal fluid electroencephalogram adenosine MCH tris buffered saline CPA aCSF hypocretin c-fos protein immunoreactivity 1,3-dipropyl-8-phenylxanthine, an A 1 receptor antagonist Posterior hypothalamus Adenosine Rat Rodentia Central nervous system A1 Adenosine receptor Lateral hypothalamus Neuropeptide Encephalon Vertebrata Mammalia Neuron Sleep receptor adenosine A Animal perifornical-lateral hypothalamus posterior-lateral hypothalamus Orexin Biological receptor  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Published by Elsevier Ltd.  | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c471t-7042d7c74e9a14d4bf16422598b5c8572998bba0540b3ff2aada5536597279633 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 20109537 | 
    
| PQID | 733350176 | 
    
| PQPubID | 23479 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842084 proquest_miscellaneous_746003777 proquest_miscellaneous_733350176 pubmed_primary_20109537 pascalfrancis_primary_22773721 crossref_primary_10_1016_j_neuroscience_2010_01_044 crossref_citationtrail_10_1016_j_neuroscience_2010_01_044 elsevier_clinicalkeyesjournals_1_s2_0_S0306452210000928  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-Apr-28 | 
    
| PublicationDateYYYYMMDD | 2010-04-28 | 
    
| PublicationDate_xml | – month: 04 year: 2010 text: 2010-Apr-28 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam – name: United States  | 
    
| PublicationTitle | Neuroscience | 
    
| PublicationTitleAlternate | Neuroscience | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier | 
    
| Publisher_xml | – name: Elsevier | 
    
| References | Alam (10.1016/j.neuroscience.2010.01.044_bib5) 2009; 1304 Baldo (10.1016/j.neuroscience.2010.01.044_bib8) 2004; 19 Thakkar (10.1016/j.neuroscience.2010.01.044_bib50) 2001; 139 Alam (10.1016/j.neuroscience.2010.01.044_bib4) 2005; 563 Peyron (10.1016/j.neuroscience.2010.01.044_bib38) 2000; 6 Radulovacki (10.1016/j.neuroscience.2010.01.044_bib43) 1984; 228 Dunwiddie (10.1016/j.neuroscience.2010.01.044_bib16) 2001; 24 Abrahamson (10.1016/j.neuroscience.2010.01.044_bib1) 2001; 889 Bittencourt (10.1016/j.neuroscience.2010.01.044_bib13) 1992; 319 Goutagny (10.1016/j.neuroscience.2010.01.044_bib20) 2005; 16 Estabrooke (10.1016/j.neuroscience.2010.01.044_bib18) 2001; 21 Methippara (10.1016/j.neuroscience.2010.01.044_bib32) 2000; 11 Gerashchenko (10.1016/j.neuroscience.2010.01.044_bib19) 2004; 29 Lin (10.1016/j.neuroscience.2010.01.044_bib27) 1999; 98 Szymusiak (10.1016/j.neuroscience.2010.01.044_bib48) 2008; 1129 Nishino (10.1016/j.neuroscience.2010.01.044_bib35) 2007; 41 Paxinos (10.1016/j.neuroscience.2010.01.044_bib37) 1998 Scharf (10.1016/j.neuroscience.2010.01.044_bib44) 2008; 86 Sinnamon (10.1016/j.neuroscience.2010.01.044_bib45) 1999; 99 Bennett (10.1016/j.neuroscience.2010.01.044_bib12) 1998; 401 Methippara (10.1016/j.neuroscience.2010.01.044_bib33) 2005; 289 Quan (10.1016/j.neuroscience.2010.01.044_bib42) 1989; 22 Stock (10.1016/j.neuroscience.2010.01.044_bib46) 1981; 3 McCarley (10.1016/j.neuroscience.2010.01.044_bib31) 2007; 8 Ohno (10.1016/j.neuroscience.2010.01.044_bib36) 2008; 29 Basheer (10.1016/j.neuroscience.2010.01.044_bib9) 2004; 73 Hassani (10.1016/j.neuroscience.2010.01.044_bib21) 2009; 106 Alam (10.1016/j.neuroscience.2010.01.044_bib3) 2002; 538 Porkka-Heiskanen (10.1016/j.neuroscience.2010.01.044_bib41) 1997; 276 Thakkar (10.1016/j.neuroscience.2010.01.044_bib49) 2008; 153 Thakkar (10.1016/j.neuroscience.2010.01.044_bib51) 2002; 944 Suntsova (10.1016/j.neuroscience.2010.01.044_bib47) 2007; 27 Kukkonen (10.1016/j.neuroscience.2010.01.044_bib23) 2002; 283 Thannickal (10.1016/j.neuroscience.2010.01.044_bib52) 2000; 27 Benington (10.1016/j.neuroscience.2010.01.044_bib10) 1995; 45 Liu (10.1016/j.neuroscience.2010.01.044_bib28) 2002; 22 Anaclet (10.1016/j.neuroscience.2010.01.044_bib7) 2009; 29 Datta (10.1016/j.neuroscience.2010.01.044_bib15) 2007; 31 Alam (10.1016/j.neuroscience.2010.01.044_bib2) 2008; 439 Koyama (10.1016/j.neuroscience.2010.01.044_bib22) 2003; 119 Lee (10.1016/j.neuroscience.2010.01.044_bib26) 2005; 25 Alam (10.1016/j.neuroscience.2010.01.044_bib6) 1999; 521 Maquet (10.1016/j.neuroscience.2010.01.044_bib30) 1995; 69 Landolt (10.1016/j.neuroscience.2010.01.044_bib25) 1995; 12 Peyron (10.1016/j.neuroscience.2010.01.044_bib39) 2009; 30 Mileykovskiy (10.1016/j.neuroscience.2010.01.044_bib34) 2005; 46 Liu (10.1016/j.neuroscience.2010.01.044_bib29) 2007; 97 Benington (10.1016/j.neuroscience.2010.01.044_bib11) 1995; 692 Bourgin (10.1016/j.neuroscience.2010.01.044_bib14) 2000; 20 Kumar (10.1016/j.neuroscience.2010.01.044_bib24) 2007; 25 Espana (10.1016/j.neuroscience.2010.01.044_bib17) 2003; 121 Peyron (10.1016/j.neuroscience.2010.01.044_bib40) 1998; 18  | 
    
| References_xml | – volume: 29 start-page: 14423 year: 2009 ident: 10.1016/j.neuroscience.2010.01.044_bib7 article-title: Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2604-09.2009 – volume: 86 start-page: 264 year: 2008 ident: 10.1016/j.neuroscience.2010.01.044_bib44 article-title: The energy hypothesis of sleep revisited publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2008.08.003 – volume: 20 start-page: 7760 year: 2000 ident: 10.1016/j.neuroscience.2010.01.044_bib14 article-title: Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-20-07760.2000 – volume: 25 start-page: 201 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib24 article-title: Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2006.05268.x – volume: 21 start-page: 1656 year: 2001 ident: 10.1016/j.neuroscience.2010.01.044_bib18 article-title: Fos expression in orexin neurons varies with behavioral state publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-05-01656.2001 – volume: 73 start-page: 379 year: 2004 ident: 10.1016/j.neuroscience.2010.01.044_bib9 article-title: Adenosine and sleep-wake regulation publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2004.06.004 – volume: 538 start-page: 619 year: 2002 ident: 10.1016/j.neuroscience.2010.01.044_bib3 article-title: Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area publication-title: J Physiol doi: 10.1113/jphysiol.2001.012888 – volume: 12 start-page: 229 year: 1995 ident: 10.1016/j.neuroscience.2010.01.044_bib25 article-title: Caffeine reduces low-frequency delta activity in the human sleep EEG publication-title: Neuropsychopharmacology doi: 10.1016/0893-133X(94)00079-F – volume: 22 start-page: 9453 year: 2002 ident: 10.1016/j.neuroscience.2010.01.044_bib28 article-title: Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-21-09453.2002 – volume: 97 start-page: 837 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib29 article-title: Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect publication-title: J Neurophysiol doi: 10.1152/jn.00873.2006 – volume: 3 start-page: 503 year: 1981 ident: 10.1016/j.neuroscience.2010.01.044_bib46 article-title: Cardiovascular changes during arousal elicited by stimulation of amygdala, hypothalamus and locus coeruleus publication-title: J Auton Nerv Syst doi: 10.1016/0165-1838(81)90083-7 – volume: 99 start-page: 219 year: 1999 ident: 10.1016/j.neuroscience.2010.01.044_bib45 article-title: Locomotion and head scanning initiated by hypothalamic stimulation are inversely related publication-title: Behav Brain Res doi: 10.1016/S0166-4328(98)00106-5 – volume: 31 start-page: 775 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib15 article-title: Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2007.02.004 – volume: 944 start-page: 190 year: 2002 ident: 10.1016/j.neuroscience.2010.01.044_bib51 article-title: Orexin neurons of the hypothalamus express adenosine A1 receptors publication-title: Brain Res doi: 10.1016/S0006-8993(02)02873-1 – volume: 19 start-page: 376 year: 2004 ident: 10.1016/j.neuroscience.2010.01.044_bib8 article-title: Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2004.03093.x – volume: 22 start-page: 621 year: 1989 ident: 10.1016/j.neuroscience.2010.01.044_bib42 article-title: Microdialysis: a system for localized drug delivery into the brain publication-title: Brain Res Bull doi: 10.1016/0361-9230(89)90080-4 – volume: 319 start-page: 218 year: 1992 ident: 10.1016/j.neuroscience.2010.01.044_bib13 article-title: The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization publication-title: J Comp Neurol doi: 10.1002/cne.903190204 – volume: 69 start-page: 75 year: 1995 ident: 10.1016/j.neuroscience.2010.01.044_bib30 article-title: Sleep function(s) and cerebral metabolism publication-title: Behav Brain Res doi: 10.1016/0166-4328(95)00017-N – volume: 1304 start-page: 96 year: 2009 ident: 10.1016/j.neuroscience.2010.01.044_bib5 article-title: Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats publication-title: Brain Res doi: 10.1016/j.brainres.2009.09.066 – volume: 119 start-page: 1209 year: 2003 ident: 10.1016/j.neuroscience.2010.01.044_bib22 article-title: State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00173-8 – volume: 889 start-page: 1 year: 2001 ident: 10.1016/j.neuroscience.2010.01.044_bib1 article-title: The posterior hypothalamic area: chemoarchitecture and afferent connections publication-title: Brain Res doi: 10.1016/S0006-8993(00)03015-8 – volume: 11 start-page: 3423 year: 2000 ident: 10.1016/j.neuroscience.2010.01.044_bib32 article-title: Effects of lateral preoptic area application of orexin-A on sleep-wakefulness publication-title: Neuroreport doi: 10.1097/00001756-200011090-00004 – volume: 139 start-page: 313 year: 2001 ident: 10.1016/j.neuroscience.2010.01.044_bib50 article-title: Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats publication-title: Arch Ital Biol – volume: 29 start-page: 41 year: 2004 ident: 10.1016/j.neuroscience.2010.01.044_bib19 article-title: Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness publication-title: Mol Neurobiol doi: 10.1385/MN:29:1:41 – volume: 45 start-page: 347 year: 1995 ident: 10.1016/j.neuroscience.2010.01.044_bib10 article-title: Restoration of brain energy metabolism as the function of sleep publication-title: Prog Neurobiol doi: 10.1016/0301-0082(94)00057-O – volume: 153 start-page: 875 year: 2008 ident: 10.1016/j.neuroscience.2010.01.044_bib49 article-title: Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.01.017 – volume: 563 start-page: 569 year: 2005 ident: 10.1016/j.neuroscience.2010.01.044_bib4 article-title: GABA-mediated control of hypocretin-but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats publication-title: J Physiol doi: 10.1113/jphysiol.2004.076927 – volume: 24 start-page: 31 year: 2001 ident: 10.1016/j.neuroscience.2010.01.044_bib16 article-title: The role and regulation of adenosine in the central nervous system publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.24.1.31 – volume: 25 start-page: 6716 year: 2005 ident: 10.1016/j.neuroscience.2010.01.044_bib26 article-title: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1887-05.2005 – volume: 46 start-page: 787 year: 2005 ident: 10.1016/j.neuroscience.2010.01.044_bib34 article-title: Behavioral correlates of activity in identified hypocretin/orexin neurons publication-title: Neuron doi: 10.1016/j.neuron.2005.04.035 – volume: 106 start-page: 2418 year: 2009 ident: 10.1016/j.neuroscience.2010.01.044_bib21 article-title: Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0811400106 – volume: 228 start-page: 268 year: 1984 ident: 10.1016/j.neuroscience.2010.01.044_bib43 article-title: Adenosine analogs and sleep in rats publication-title: J Pharmacol Exp Ther – volume: 98 start-page: 365 year: 1999 ident: 10.1016/j.neuroscience.2010.01.044_bib27 article-title: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene publication-title: Cell doi: 10.1016/S0092-8674(00)81965-0 – volume: 521 start-page: 679 issue: Pt. 3 year: 1999 ident: 10.1016/j.neuroscience.2010.01.044_bib6 article-title: Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.00679.x – volume: 121 start-page: 201 year: 2003 ident: 10.1016/j.neuroscience.2010.01.044_bib17 article-title: Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00334-8 – volume: 8 start-page: 302 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib31 article-title: Neurobiology of REM and NREM sleep publication-title: Sleep Med doi: 10.1016/j.sleep.2007.03.005 – volume: 692 start-page: 79 year: 1995 ident: 10.1016/j.neuroscience.2010.01.044_bib11 article-title: Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation publication-title: Brain Res doi: 10.1016/0006-8993(95)00590-M – volume: 16 start-page: 1069 year: 2005 ident: 10.1016/j.neuroscience.2010.01.044_bib20 article-title: GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle publication-title: Neuroreport doi: 10.1097/00001756-200507130-00008 – year: 1998 ident: 10.1016/j.neuroscience.2010.01.044_bib37 – volume: 27 start-page: 469 year: 2000 ident: 10.1016/j.neuroscience.2010.01.044_bib52 article-title: Reduced number of hypocretin neurons in human narcolepsy publication-title: Neuron doi: 10.1016/S0896-6273(00)00058-1 – volume: 283 start-page: C1567 year: 2002 ident: 10.1016/j.neuroscience.2010.01.044_bib23 article-title: Functions of the orexinergic/hypocretinergic system publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00055.2002 – volume: 289 start-page: R1715 year: 2005 ident: 10.1016/j.neuroscience.2010.01.044_bib33 article-title: Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00247.2005 – volume: 30 start-page: 2052 year: 2009 ident: 10.1016/j.neuroscience.2010.01.044_bib39 article-title: Role of the melanin-concentrating hormone neuropeptide in sleep regulation publication-title: Peptides doi: 10.1016/j.peptides.2009.07.022 – volume: 276 start-page: 1265 year: 1997 ident: 10.1016/j.neuroscience.2010.01.044_bib41 article-title: Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness publication-title: Science doi: 10.1126/science.276.5316.1265 – volume: 439 start-page: 281 year: 2008 ident: 10.1016/j.neuroscience.2010.01.044_bib2 article-title: Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep publication-title: Neurosci Lett doi: 10.1016/j.neulet.2008.05.042 – volume: 18 start-page: 9996 year: 1998 ident: 10.1016/j.neuroscience.2010.01.044_bib40 article-title: Neurons containing hypocretin (orexin) project to multiple neuronal systems publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-23-09996.1998 – volume: 1129 start-page: 275 year: 2008 ident: 10.1016/j.neuroscience.2010.01.044_bib48 article-title: Hypothalamic regulation of sleep and arousal publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1417.027 – volume: 29 start-page: 70 year: 2008 ident: 10.1016/j.neuroscience.2010.01.044_bib36 article-title: Orexin neuronal circuitry: role in the regulation of sleep and wakefulness publication-title: Front Neuroendocrinol doi: 10.1016/j.yfrne.2007.08.001 – volume: 6 start-page: 991 year: 2000 ident: 10.1016/j.neuroscience.2010.01.044_bib38 article-title: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains publication-title: Nat Med doi: 10.1038/79690 – volume: 41 start-page: 117 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib35 article-title: The hypothalamic peptidergic system, hypocretin/orexin and vigilance control publication-title: Neuropeptides doi: 10.1016/j.npep.2007.01.003 – volume: 401 start-page: 89 year: 1998 ident: 10.1016/j.neuroscience.2010.01.044_bib12 article-title: Immunohistochemical localization of caffeine-induced c-Fos protein expression in the rat brain publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19981109)401:1<89::AID-CNE6>3.0.CO;2-X – volume: 27 start-page: 1616 year: 2007 ident: 10.1016/j.neuroscience.2010.01.044_bib47 article-title: The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3498-06.2007  | 
    
| SSID | ssj0000543 | 
    
| Score | 2.145103 | 
    
| Snippet | Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal... The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types...  | 
    
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 40 | 
    
| SubjectTerms | Adenosine - analogs & derivatives Adenosine - pharmacology Adenosine A1 Receptor Agonists Adenosine A1 Receptor Antagonists Animals Biological and medical sciences Catheterization Central Nervous System Agents - pharmacology Electrodes, Implanted Fundamental and applied biological sciences. Psychology Hypothalamus - drug effects Hypothalamus - physiology Intracellular Signaling Peptides and Proteins - metabolism Light Male Microdialysis Microelectrodes Neurology Neurons - drug effects Neurons - physiology Neuropeptides - metabolism Orexins Photoperiod Proto-Oncogene Proteins c-fos - metabolism Rats Rats, Sprague-Dawley Receptor, Adenosine A1 - metabolism Sleep - drug effects Sleep - physiology Sleep. Vigilance Vertebrates: nervous system and sense organs Wakefulness - drug effects Wakefulness - physiology Xanthines - pharmacology  | 
    
| Title | A1 receptor mediated adenosinergic regulation of perifornical–lateral hypothalamic area neurons in freely behaving rats | 
    
| URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0306452210000928 https://www.ncbi.nlm.nih.gov/pubmed/20109537 https://www.proquest.com/docview/733350176 https://www.proquest.com/docview/746003777 https://pubmed.ncbi.nlm.nih.gov/PMC2842084  | 
    
| Volume | 167 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7544 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FckFCCCiP8Kj2gLhEtvxe-xhVRRWoPdBW6m21dtY0bepEdXJID4j_wI2fxy9hZh9-0AaVXiLHr6z1fdmZ8c58Q8iHJM9zEaeJI1PhOcCQyMk84UPMU6B59gqRYqHwwWGyfxJ9Po1PB4Nfnayl1TJ3i-tb60rugyrsA1yxSvY_kG1uCjtgG_CFT0AYPu-E8dgfwYQlFxA36xIQdB_FBPW_VU2fkmf-Zhp0qdxmGJWqxAJkbJpDCIfxxdTobL0A2MQMO9SPBDiTIyV2qTPNyyspZ2tT1a_aE2kJKOvYHra6mA1VvupW14272aRzN3vGho8HbkOko-v15aqeios2m9G8lMD19MgWeZtiLC9xUKy9N9Hqxhs9RulpUys2GQOslTdvTO36LcO529H5lCY1z3c9LSLZ19Pe2_3iO3Xges4RjgeHo1YzMjPSvs62z-uAe_zGqQ_IwwAsBrYFcb-36UPg6urW2-ZBraCtyh3cNMZNzs_jhagB-FL3Urkt2Pk7Z7fjBB0_JU9M9ELHmorPyEBWz8n2uBLL-eWafqQqn1gt1GyT9dinlp3UspP22ElbdtJ5Sbvs_P3jp-El7fKSIi-p4SWdVlTzklpeUuTlC3Lyae94d98xjT6cAnyjpcPAckxYwSKZCT-aRHkJQTwYmizN4yKNIf6DrVxgdJGHZRkIMRFxHCYQDAcMLEj4kmxV80q-JtSbBB4EARLC8DKCLzlEECXq3WaySCC2GJLMIsALo4KPzVhm3KY7nvMuehzR457PAb0hCZtrF1oL5k5XMQs0t9XOYJ9lbSaSmm9i3pDs9HjR_GgQMOwu5Q8JtUThYBVwqU9Ucr6qOQtDzBhgyT9OiRIUn2JsSF5parX3x_XyOIQjrEe65gTUpO8fqaZnSpsevN3AS6M3937ot-RRO6G8I1vLq5V8D37_Mt9Rf8A_6JgFbw | 
    
| linkProvider | Elsevier | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A1+receptor+mediated+adenosinergic+regulation+of+perifornical%E2%80%93lateral+hypothalamic+area+neurons+in+freely+behaving+rats&rft.jtitle=Neuroscience&rft.au=Rai%2C+S&rft.au=Kumar%2C+S&rft.au=Alam%2C+M.A&rft.au=Szymusiak%2C+R&rft.date=2010-04-28&rft.issn=0306-4522&rft.volume=167&rft.issue=1&rft.spage=40&rft.epage=48&rft_id=info:doi/10.1016%2Fj.neuroscience.2010.01.044&rft.externalDBID=ECK1-s2.0-S0306452210000928&rft.externalDocID=1_s2_0_S0306452210000928 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03064522%2FS0306452210X00069%2Fcov150h.gif |