A1 receptor mediated adenosinergic regulation of perifornical–lateral hypothalamic area neurons in freely behaving rats

Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. A...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 167; no. 1; pp. 40 - 48
Main Authors Rai, S, Kumar, S, Alam, M.A, Szymusiak, R, McGinty, D, Alam, M.N
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier 28.04.2010
Subjects
EMG
TBS
EEG
MCH
CPA
Rat
Online AccessGet full text
ISSN0306-4522
1873-7544
1873-7544
DOI10.1016/j.neuroscience.2010.01.044

Cover

Abstract Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6 -cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep–wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep–wake discharge activity of PF-LHA neurons. Doses of CPA (50 μM) and CPDX (50 μM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96–104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep.
AbstractList Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6 -cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep–wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep–wake discharge activity of PF-LHA neurons. Doses of CPA (50 μM) and CPDX (50 μM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96–104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep.
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 I14M) and CPDX (50 I14M) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep.
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50μM) and CPDX (50μM) that suppressed and induced arousal, respectively, in our earlier study (Alam et al., 2009), significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep.
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.
Author Rai, S
Alam, M.A
McGinty, D
Alam, M.N
Szymusiak, R
Kumar, S
AuthorAffiliation 1 Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
2 Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
3 Department of Neurobiology, School of Medicine, University of California, Los Angeles, California, USA
4 Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
AuthorAffiliation_xml – name: 1 Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, USA
– name: 3 Department of Neurobiology, School of Medicine, University of California, Los Angeles, California, USA
– name: 4 Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
– name: 2 Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
Author_xml – sequence: 1
  fullname: Rai, S
– sequence: 2
  fullname: Kumar, S
– sequence: 3
  fullname: Alam, M.A
– sequence: 4
  fullname: Szymusiak, R
– sequence: 5
  fullname: McGinty, D
– sequence: 6
  fullname: Alam, M.N
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22773721$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20109537$$D View this record in MEDLINE/PubMed
BookMark eNqNUsmOEzEQtdAgZoFfQBYS4pTgtd3NATEasUkjcQDOVrW7OnHo2MHujpQb_8Af8iU4mTAMXMAXW3pLlaveOTkJMSAhTzibc8ar56t5wCnF7DwGh3PBCsD4nCl1j5zx2siZ0UqdkDMmWTVTWohTcp7zipWjlXxATveSRktzRnaXnCZ0uBljomvsPIzYUegwxOwDpoV3BV9MA4w-Bhp7usHk-5iCdzD8-Pa9AJhgoMvdJo5LGGBdFJAQ6KHJkKkPtE-Iw462uIStDwuaYMwPyf0ehoyPjvcF-fzm9aerd7PrD2_fX11ez5wyfJwZpkRnnFHYAFedanteKSF0U7fa1dqIprxaKB9jrex7AdCB1rLSjRGmqaS8IC9vfDdTWz7oMIylX7tJfg1pZyN4-ycS_NIu4taKWglWq2Lw7GiQ4tcJ82jXPjscBggYp2yNqhiTxph_M6WUmnFTFebju03ddvNrMYXw9EiAXAbdJwjO5988UcoZwQvvxQ3PlUDkhP0thTO7T4td2btpOVSwjNuSliJ-9ZfY-fGw6DIIP_yfxXG6WFa49ZisG_whG19wh3kVpxTKdi23WVhmP-4juU8k34exEbX8CcZF5SM
CODEN NRSCDN
CitedBy_id crossref_primary_10_1002_advs_202407706
crossref_primary_10_1007_s12264_013_1442_8
crossref_primary_10_1016_j_conb_2013_04_010
crossref_primary_10_1038_s41401_024_01443_0
crossref_primary_10_1155_2019_2389485
crossref_primary_10_1152_jn_00675_2016
crossref_primary_10_5665_sleep_3680
crossref_primary_10_5665_sleep_3490
crossref_primary_10_1152_physrev_00032_2011
crossref_primary_10_1016_j_jns_2016_01_031
crossref_primary_10_1016_j_sleep_2024_02_012
crossref_primary_10_1016_j_neuroscience_2012_06_014
crossref_primary_10_1111_jnc_14100
crossref_primary_10_1152_ajpregu_00402_2012
crossref_primary_10_1016_j_cub_2019_05_009
crossref_primary_10_1016_j_neuroscience_2011_01_052
crossref_primary_10_5665_sleep_2316
crossref_primary_10_1007_s40675_014_0007_3
crossref_primary_10_1016_j_pneurobio_2011_08_006
crossref_primary_10_3389_fnsys_2015_00009
crossref_primary_10_1007_s40675_015_0013_0
crossref_primary_10_1134_S1819712418010130
crossref_primary_10_1016_j_brainres_2011_10_018
crossref_primary_10_3724_SP_J_1260_2011_00005
Cites_doi 10.1523/JNEUROSCI.2604-09.2009
10.1016/j.pneurobio.2008.08.003
10.1523/JNEUROSCI.20-20-07760.2000
10.1111/j.1460-9568.2006.05268.x
10.1523/JNEUROSCI.21-05-01656.2001
10.1016/j.pneurobio.2004.06.004
10.1113/jphysiol.2001.012888
10.1016/0893-133X(94)00079-F
10.1523/JNEUROSCI.22-21-09453.2002
10.1152/jn.00873.2006
10.1016/0165-1838(81)90083-7
10.1016/S0166-4328(98)00106-5
10.1016/j.neubiorev.2007.02.004
10.1016/S0006-8993(02)02873-1
10.1111/j.1460-9568.2004.03093.x
10.1016/0361-9230(89)90080-4
10.1002/cne.903190204
10.1016/0166-4328(95)00017-N
10.1016/j.brainres.2009.09.066
10.1016/S0306-4522(03)00173-8
10.1016/S0006-8993(00)03015-8
10.1097/00001756-200011090-00004
10.1385/MN:29:1:41
10.1016/0301-0082(94)00057-O
10.1016/j.neuroscience.2008.01.017
10.1113/jphysiol.2004.076927
10.1146/annurev.neuro.24.1.31
10.1523/JNEUROSCI.1887-05.2005
10.1016/j.neuron.2005.04.035
10.1073/pnas.0811400106
10.1016/S0092-8674(00)81965-0
10.1111/j.1469-7793.1999.00679.x
10.1016/S0306-4522(03)00334-8
10.1016/j.sleep.2007.03.005
10.1016/0006-8993(95)00590-M
10.1097/00001756-200507130-00008
10.1016/S0896-6273(00)00058-1
10.1152/ajpcell.00055.2002
10.1152/ajpregu.00247.2005
10.1016/j.peptides.2009.07.022
10.1126/science.276.5316.1265
10.1016/j.neulet.2008.05.042
10.1523/JNEUROSCI.18-23-09996.1998
10.1196/annals.1417.027
10.1016/j.yfrne.2007.08.001
10.1038/79690
10.1016/j.npep.2007.01.003
10.1002/(SICI)1096-9861(19981109)401:1<89::AID-CNE6>3.0.CO;2-X
10.1523/JNEUROSCI.3498-06.2007
ContentType Journal Article
Copyright 2015 INIST-CNRS
Published by Elsevier Ltd.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Published by Elsevier Ltd.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.neuroscience.2010.01.044
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 48
ExternalDocumentID PMC2842084
20109537
22773721
10_1016_j_neuroscience_2010_01_044
1_s2_0_S0306452210000928
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH063323
– fundername: NIMH NIH HHS
  grantid: R01 MH075076
– fundername: NINDS NIH HHS
  grantid: NS-050939
– fundername: NINDS NIH HHS
  grantid: R01 NS050939
– fundername: NIMH NIH HHS
  grantid: MH075076
– fundername: NIMH NIH HHS
  grantid: MH63323
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
UNMZH
WUQ
X7M
YYP
Z5R
ZGI
ZXP
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c471t-7042d7c74e9a14d4bf16422598b5c8572998bba0540b3ff2aada5536597279633
ISSN 0306-4522
1873-7544
IngestDate Tue Sep 30 16:58:40 EDT 2025
Thu Oct 02 11:08:31 EDT 2025
Sun Sep 28 06:45:46 EDT 2025
Mon Jul 21 05:49:02 EDT 2025
Mon Jul 21 09:14:12 EDT 2025
Wed Oct 01 03:18:50 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Sun Feb 23 10:18:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NonREM
posterior–lateral hypothalamus
melanin-concentrating hormone
electromyogram
sleep
perifornical–lateral hypothalamus
orexin
perifornical–lateral hypothalamic area
HCRT
PF-LHA
adenosine A 1 receptor
CPDX
EMG
N 6-cyclopentyladenosine, an A 1 receptor agonist
TBS
EEG
non-rapid eye movement sleep
Fos-IR
artificial cerebrospinal fluid
electroencephalogram
adenosine
MCH
tris buffered saline
CPA
aCSF
hypocretin
c-fos protein immunoreactivity
1,3-dipropyl-8-phenylxanthine, an A 1 receptor antagonist
Posterior hypothalamus
Adenosine
Rat
Rodentia
Central nervous system
A1 Adenosine receptor
Lateral hypothalamus
Neuropeptide
Encephalon
Vertebrata
Mammalia
Neuron
Sleep
receptor
adenosine A
Animal
perifornical-lateral hypothalamus
posterior-lateral hypothalamus
Orexin
Biological receptor
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-7042d7c74e9a14d4bf16422598b5c8572998bba0540b3ff2aada5536597279633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20109537
PQID 733350176
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2842084
proquest_miscellaneous_746003777
proquest_miscellaneous_733350176
pubmed_primary_20109537
pascalfrancis_primary_22773721
crossref_primary_10_1016_j_neuroscience_2010_01_044
crossref_citationtrail_10_1016_j_neuroscience_2010_01_044
elsevier_clinicalkeyesjournals_1_s2_0_S0306452210000928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-Apr-28
PublicationDateYYYYMMDD 2010-04-28
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-Apr-28
  day: 28
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2010
Publisher Elsevier
Publisher_xml – name: Elsevier
References Alam (10.1016/j.neuroscience.2010.01.044_bib5) 2009; 1304
Baldo (10.1016/j.neuroscience.2010.01.044_bib8) 2004; 19
Thakkar (10.1016/j.neuroscience.2010.01.044_bib50) 2001; 139
Alam (10.1016/j.neuroscience.2010.01.044_bib4) 2005; 563
Peyron (10.1016/j.neuroscience.2010.01.044_bib38) 2000; 6
Radulovacki (10.1016/j.neuroscience.2010.01.044_bib43) 1984; 228
Dunwiddie (10.1016/j.neuroscience.2010.01.044_bib16) 2001; 24
Abrahamson (10.1016/j.neuroscience.2010.01.044_bib1) 2001; 889
Bittencourt (10.1016/j.neuroscience.2010.01.044_bib13) 1992; 319
Goutagny (10.1016/j.neuroscience.2010.01.044_bib20) 2005; 16
Estabrooke (10.1016/j.neuroscience.2010.01.044_bib18) 2001; 21
Methippara (10.1016/j.neuroscience.2010.01.044_bib32) 2000; 11
Gerashchenko (10.1016/j.neuroscience.2010.01.044_bib19) 2004; 29
Lin (10.1016/j.neuroscience.2010.01.044_bib27) 1999; 98
Szymusiak (10.1016/j.neuroscience.2010.01.044_bib48) 2008; 1129
Nishino (10.1016/j.neuroscience.2010.01.044_bib35) 2007; 41
Paxinos (10.1016/j.neuroscience.2010.01.044_bib37) 1998
Scharf (10.1016/j.neuroscience.2010.01.044_bib44) 2008; 86
Sinnamon (10.1016/j.neuroscience.2010.01.044_bib45) 1999; 99
Bennett (10.1016/j.neuroscience.2010.01.044_bib12) 1998; 401
Methippara (10.1016/j.neuroscience.2010.01.044_bib33) 2005; 289
Quan (10.1016/j.neuroscience.2010.01.044_bib42) 1989; 22
Stock (10.1016/j.neuroscience.2010.01.044_bib46) 1981; 3
McCarley (10.1016/j.neuroscience.2010.01.044_bib31) 2007; 8
Ohno (10.1016/j.neuroscience.2010.01.044_bib36) 2008; 29
Basheer (10.1016/j.neuroscience.2010.01.044_bib9) 2004; 73
Hassani (10.1016/j.neuroscience.2010.01.044_bib21) 2009; 106
Alam (10.1016/j.neuroscience.2010.01.044_bib3) 2002; 538
Porkka-Heiskanen (10.1016/j.neuroscience.2010.01.044_bib41) 1997; 276
Thakkar (10.1016/j.neuroscience.2010.01.044_bib49) 2008; 153
Thakkar (10.1016/j.neuroscience.2010.01.044_bib51) 2002; 944
Suntsova (10.1016/j.neuroscience.2010.01.044_bib47) 2007; 27
Kukkonen (10.1016/j.neuroscience.2010.01.044_bib23) 2002; 283
Thannickal (10.1016/j.neuroscience.2010.01.044_bib52) 2000; 27
Benington (10.1016/j.neuroscience.2010.01.044_bib10) 1995; 45
Liu (10.1016/j.neuroscience.2010.01.044_bib28) 2002; 22
Anaclet (10.1016/j.neuroscience.2010.01.044_bib7) 2009; 29
Datta (10.1016/j.neuroscience.2010.01.044_bib15) 2007; 31
Alam (10.1016/j.neuroscience.2010.01.044_bib2) 2008; 439
Koyama (10.1016/j.neuroscience.2010.01.044_bib22) 2003; 119
Lee (10.1016/j.neuroscience.2010.01.044_bib26) 2005; 25
Alam (10.1016/j.neuroscience.2010.01.044_bib6) 1999; 521
Maquet (10.1016/j.neuroscience.2010.01.044_bib30) 1995; 69
Landolt (10.1016/j.neuroscience.2010.01.044_bib25) 1995; 12
Peyron (10.1016/j.neuroscience.2010.01.044_bib39) 2009; 30
Mileykovskiy (10.1016/j.neuroscience.2010.01.044_bib34) 2005; 46
Liu (10.1016/j.neuroscience.2010.01.044_bib29) 2007; 97
Benington (10.1016/j.neuroscience.2010.01.044_bib11) 1995; 692
Bourgin (10.1016/j.neuroscience.2010.01.044_bib14) 2000; 20
Kumar (10.1016/j.neuroscience.2010.01.044_bib24) 2007; 25
Espana (10.1016/j.neuroscience.2010.01.044_bib17) 2003; 121
Peyron (10.1016/j.neuroscience.2010.01.044_bib40) 1998; 18
References_xml – volume: 29
  start-page: 14423
  year: 2009
  ident: 10.1016/j.neuroscience.2010.01.044_bib7
  article-title: Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2604-09.2009
– volume: 86
  start-page: 264
  year: 2008
  ident: 10.1016/j.neuroscience.2010.01.044_bib44
  article-title: The energy hypothesis of sleep revisited
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2008.08.003
– volume: 20
  start-page: 7760
  year: 2000
  ident: 10.1016/j.neuroscience.2010.01.044_bib14
  article-title: Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-20-07760.2000
– volume: 25
  start-page: 201
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib24
  article-title: Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2006.05268.x
– volume: 21
  start-page: 1656
  year: 2001
  ident: 10.1016/j.neuroscience.2010.01.044_bib18
  article-title: Fos expression in orexin neurons varies with behavioral state
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-05-01656.2001
– volume: 73
  start-page: 379
  year: 2004
  ident: 10.1016/j.neuroscience.2010.01.044_bib9
  article-title: Adenosine and sleep-wake regulation
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2004.06.004
– volume: 538
  start-page: 619
  year: 2002
  ident: 10.1016/j.neuroscience.2010.01.044_bib3
  article-title: Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2001.012888
– volume: 12
  start-page: 229
  year: 1995
  ident: 10.1016/j.neuroscience.2010.01.044_bib25
  article-title: Caffeine reduces low-frequency delta activity in the human sleep EEG
  publication-title: Neuropsychopharmacology
  doi: 10.1016/0893-133X(94)00079-F
– volume: 22
  start-page: 9453
  year: 2002
  ident: 10.1016/j.neuroscience.2010.01.044_bib28
  article-title: Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-21-09453.2002
– volume: 97
  start-page: 837
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib29
  article-title: Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00873.2006
– volume: 3
  start-page: 503
  year: 1981
  ident: 10.1016/j.neuroscience.2010.01.044_bib46
  article-title: Cardiovascular changes during arousal elicited by stimulation of amygdala, hypothalamus and locus coeruleus
  publication-title: J Auton Nerv Syst
  doi: 10.1016/0165-1838(81)90083-7
– volume: 99
  start-page: 219
  year: 1999
  ident: 10.1016/j.neuroscience.2010.01.044_bib45
  article-title: Locomotion and head scanning initiated by hypothalamic stimulation are inversely related
  publication-title: Behav Brain Res
  doi: 10.1016/S0166-4328(98)00106-5
– volume: 31
  start-page: 775
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib15
  article-title: Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2007.02.004
– volume: 944
  start-page: 190
  year: 2002
  ident: 10.1016/j.neuroscience.2010.01.044_bib51
  article-title: Orexin neurons of the hypothalamus express adenosine A1 receptors
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(02)02873-1
– volume: 19
  start-page: 376
  year: 2004
  ident: 10.1016/j.neuroscience.2010.01.044_bib8
  article-title: Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2004.03093.x
– volume: 22
  start-page: 621
  year: 1989
  ident: 10.1016/j.neuroscience.2010.01.044_bib42
  article-title: Microdialysis: a system for localized drug delivery into the brain
  publication-title: Brain Res Bull
  doi: 10.1016/0361-9230(89)90080-4
– volume: 319
  start-page: 218
  year: 1992
  ident: 10.1016/j.neuroscience.2010.01.044_bib13
  article-title: The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903190204
– volume: 69
  start-page: 75
  year: 1995
  ident: 10.1016/j.neuroscience.2010.01.044_bib30
  article-title: Sleep function(s) and cerebral metabolism
  publication-title: Behav Brain Res
  doi: 10.1016/0166-4328(95)00017-N
– volume: 1304
  start-page: 96
  year: 2009
  ident: 10.1016/j.neuroscience.2010.01.044_bib5
  article-title: Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2009.09.066
– volume: 119
  start-page: 1209
  year: 2003
  ident: 10.1016/j.neuroscience.2010.01.044_bib22
  article-title: State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00173-8
– volume: 889
  start-page: 1
  year: 2001
  ident: 10.1016/j.neuroscience.2010.01.044_bib1
  article-title: The posterior hypothalamic area: chemoarchitecture and afferent connections
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(00)03015-8
– volume: 11
  start-page: 3423
  year: 2000
  ident: 10.1016/j.neuroscience.2010.01.044_bib32
  article-title: Effects of lateral preoptic area application of orexin-A on sleep-wakefulness
  publication-title: Neuroreport
  doi: 10.1097/00001756-200011090-00004
– volume: 139
  start-page: 313
  year: 2001
  ident: 10.1016/j.neuroscience.2010.01.044_bib50
  article-title: Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats
  publication-title: Arch Ital Biol
– volume: 29
  start-page: 41
  year: 2004
  ident: 10.1016/j.neuroscience.2010.01.044_bib19
  article-title: Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness
  publication-title: Mol Neurobiol
  doi: 10.1385/MN:29:1:41
– volume: 45
  start-page: 347
  year: 1995
  ident: 10.1016/j.neuroscience.2010.01.044_bib10
  article-title: Restoration of brain energy metabolism as the function of sleep
  publication-title: Prog Neurobiol
  doi: 10.1016/0301-0082(94)00057-O
– volume: 153
  start-page: 875
  year: 2008
  ident: 10.1016/j.neuroscience.2010.01.044_bib49
  article-title: Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.01.017
– volume: 563
  start-page: 569
  year: 2005
  ident: 10.1016/j.neuroscience.2010.01.044_bib4
  article-title: GABA-mediated control of hypocretin-but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2004.076927
– volume: 24
  start-page: 31
  year: 2001
  ident: 10.1016/j.neuroscience.2010.01.044_bib16
  article-title: The role and regulation of adenosine in the central nervous system
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.24.1.31
– volume: 25
  start-page: 6716
  year: 2005
  ident: 10.1016/j.neuroscience.2010.01.044_bib26
  article-title: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1887-05.2005
– volume: 46
  start-page: 787
  year: 2005
  ident: 10.1016/j.neuroscience.2010.01.044_bib34
  article-title: Behavioral correlates of activity in identified hypocretin/orexin neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.035
– volume: 106
  start-page: 2418
  year: 2009
  ident: 10.1016/j.neuroscience.2010.01.044_bib21
  article-title: Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0811400106
– volume: 228
  start-page: 268
  year: 1984
  ident: 10.1016/j.neuroscience.2010.01.044_bib43
  article-title: Adenosine analogs and sleep in rats
  publication-title: J Pharmacol Exp Ther
– volume: 98
  start-page: 365
  year: 1999
  ident: 10.1016/j.neuroscience.2010.01.044_bib27
  article-title: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81965-0
– volume: 521
  start-page: 679
  issue: Pt. 3
  year: 1999
  ident: 10.1016/j.neuroscience.2010.01.044_bib6
  article-title: Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1999.00679.x
– volume: 121
  start-page: 201
  year: 2003
  ident: 10.1016/j.neuroscience.2010.01.044_bib17
  article-title: Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00334-8
– volume: 8
  start-page: 302
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib31
  article-title: Neurobiology of REM and NREM sleep
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2007.03.005
– volume: 692
  start-page: 79
  year: 1995
  ident: 10.1016/j.neuroscience.2010.01.044_bib11
  article-title: Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation
  publication-title: Brain Res
  doi: 10.1016/0006-8993(95)00590-M
– volume: 16
  start-page: 1069
  year: 2005
  ident: 10.1016/j.neuroscience.2010.01.044_bib20
  article-title: GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle
  publication-title: Neuroreport
  doi: 10.1097/00001756-200507130-00008
– year: 1998
  ident: 10.1016/j.neuroscience.2010.01.044_bib37
– volume: 27
  start-page: 469
  year: 2000
  ident: 10.1016/j.neuroscience.2010.01.044_bib52
  article-title: Reduced number of hypocretin neurons in human narcolepsy
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00058-1
– volume: 283
  start-page: C1567
  year: 2002
  ident: 10.1016/j.neuroscience.2010.01.044_bib23
  article-title: Functions of the orexinergic/hypocretinergic system
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00055.2002
– volume: 289
  start-page: R1715
  year: 2005
  ident: 10.1016/j.neuroscience.2010.01.044_bib33
  article-title: Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00247.2005
– volume: 30
  start-page: 2052
  year: 2009
  ident: 10.1016/j.neuroscience.2010.01.044_bib39
  article-title: Role of the melanin-concentrating hormone neuropeptide in sleep regulation
  publication-title: Peptides
  doi: 10.1016/j.peptides.2009.07.022
– volume: 276
  start-page: 1265
  year: 1997
  ident: 10.1016/j.neuroscience.2010.01.044_bib41
  article-title: Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness
  publication-title: Science
  doi: 10.1126/science.276.5316.1265
– volume: 439
  start-page: 281
  year: 2008
  ident: 10.1016/j.neuroscience.2010.01.044_bib2
  article-title: Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2008.05.042
– volume: 18
  start-page: 9996
  year: 1998
  ident: 10.1016/j.neuroscience.2010.01.044_bib40
  article-title: Neurons containing hypocretin (orexin) project to multiple neuronal systems
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-23-09996.1998
– volume: 1129
  start-page: 275
  year: 2008
  ident: 10.1016/j.neuroscience.2010.01.044_bib48
  article-title: Hypothalamic regulation of sleep and arousal
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1417.027
– volume: 29
  start-page: 70
  year: 2008
  ident: 10.1016/j.neuroscience.2010.01.044_bib36
  article-title: Orexin neuronal circuitry: role in the regulation of sleep and wakefulness
  publication-title: Front Neuroendocrinol
  doi: 10.1016/j.yfrne.2007.08.001
– volume: 6
  start-page: 991
  year: 2000
  ident: 10.1016/j.neuroscience.2010.01.044_bib38
  article-title: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains
  publication-title: Nat Med
  doi: 10.1038/79690
– volume: 41
  start-page: 117
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib35
  article-title: The hypothalamic peptidergic system, hypocretin/orexin and vigilance control
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2007.01.003
– volume: 401
  start-page: 89
  year: 1998
  ident: 10.1016/j.neuroscience.2010.01.044_bib12
  article-title: Immunohistochemical localization of caffeine-induced c-Fos protein expression in the rat brain
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(19981109)401:1<89::AID-CNE6>3.0.CO;2-X
– volume: 27
  start-page: 1616
  year: 2007
  ident: 10.1016/j.neuroscience.2010.01.044_bib47
  article-title: The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3498-06.2007
SSID ssj0000543
Score 2.145103
Snippet Abstract The perifornical–lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal...
The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Adenosine - analogs & derivatives
Adenosine - pharmacology
Adenosine A1 Receptor Agonists
Adenosine A1 Receptor Antagonists
Animals
Biological and medical sciences
Catheterization
Central Nervous System Agents - pharmacology
Electrodes, Implanted
Fundamental and applied biological sciences. Psychology
Hypothalamus - drug effects
Hypothalamus - physiology
Intracellular Signaling Peptides and Proteins - metabolism
Light
Male
Microdialysis
Microelectrodes
Neurology
Neurons - drug effects
Neurons - physiology
Neuropeptides - metabolism
Orexins
Photoperiod
Proto-Oncogene Proteins c-fos - metabolism
Rats
Rats, Sprague-Dawley
Receptor, Adenosine A1 - metabolism
Sleep - drug effects
Sleep - physiology
Sleep. Vigilance
Vertebrates: nervous system and sense organs
Wakefulness - drug effects
Wakefulness - physiology
Xanthines - pharmacology
Title A1 receptor mediated adenosinergic regulation of perifornical–lateral hypothalamic area neurons in freely behaving rats
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0306452210000928
https://www.ncbi.nlm.nih.gov/pubmed/20109537
https://www.proquest.com/docview/733350176
https://www.proquest.com/docview/746003777
https://pubmed.ncbi.nlm.nih.gov/PMC2842084
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FckFCCCiP8Kj2gLhEtvxe-xhVRRWoPdBW6m21dtY0bepEdXJID4j_wI2fxy9hZh9-0AaVXiLHr6z1fdmZ8c58Q8iHJM9zEaeJI1PhOcCQyMk84UPMU6B59gqRYqHwwWGyfxJ9Po1PB4Nfnayl1TJ3i-tb60rugyrsA1yxSvY_kG1uCjtgG_CFT0AYPu-E8dgfwYQlFxA36xIQdB_FBPW_VU2fkmf-Zhp0qdxmGJWqxAJkbJpDCIfxxdTobL0A2MQMO9SPBDiTIyV2qTPNyyspZ2tT1a_aE2kJKOvYHra6mA1VvupW14272aRzN3vGho8HbkOko-v15aqeios2m9G8lMD19MgWeZtiLC9xUKy9N9Hqxhs9RulpUys2GQOslTdvTO36LcO529H5lCY1z3c9LSLZ19Pe2_3iO3Xges4RjgeHo1YzMjPSvs62z-uAe_zGqQ_IwwAsBrYFcb-36UPg6urW2-ZBraCtyh3cNMZNzs_jhagB-FL3Urkt2Pk7Z7fjBB0_JU9M9ELHmorPyEBWz8n2uBLL-eWafqQqn1gt1GyT9dinlp3UspP22ElbdtJ5Sbvs_P3jp-El7fKSIi-p4SWdVlTzklpeUuTlC3Lyae94d98xjT6cAnyjpcPAckxYwSKZCT-aRHkJQTwYmizN4yKNIf6DrVxgdJGHZRkIMRFxHCYQDAcMLEj4kmxV80q-JtSbBB4EARLC8DKCLzlEECXq3WaySCC2GJLMIsALo4KPzVhm3KY7nvMuehzR457PAb0hCZtrF1oL5k5XMQs0t9XOYJ9lbSaSmm9i3pDs9HjR_GgQMOwu5Q8JtUThYBVwqU9Ucr6qOQtDzBhgyT9OiRIUn2JsSF5parX3x_XyOIQjrEe65gTUpO8fqaZnSpsevN3AS6M3937ot-RRO6G8I1vLq5V8D37_Mt9Rf8A_6JgFbw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A1+receptor+mediated+adenosinergic+regulation+of+perifornical%E2%80%93lateral+hypothalamic+area+neurons+in+freely+behaving+rats&rft.jtitle=Neuroscience&rft.au=Rai%2C+S&rft.au=Kumar%2C+S&rft.au=Alam%2C+M.A&rft.au=Szymusiak%2C+R&rft.date=2010-04-28&rft.issn=0306-4522&rft.volume=167&rft.issue=1&rft.spage=40&rft.epage=48&rft_id=info:doi/10.1016%2Fj.neuroscience.2010.01.044&rft.externalDBID=ECK1-s2.0-S0306452210000928&rft.externalDocID=1_s2_0_S0306452210000928
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03064522%2FS0306452210X00069%2Fcov150h.gif