Research on a Multi-Dimensional Information Fusion Mechanical Wear Fault-Diagnosis Algorithm Based on Data Regeneration
Under laboratory conditions for recording a small amount of data, the characteristics of the phenomena distribution become a limitation of machine learning and advanced deep learning concepts for the diagnosis and localization of mechanical wear faults. In this paper, we adopt the combination of the...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 12; p. 3745 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
15.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25123745 |
Cover
| Summary: | Under laboratory conditions for recording a small amount of data, the characteristics of the phenomena distribution become a limitation of machine learning and advanced deep learning concepts for the diagnosis and localization of mechanical wear faults. In this paper, we adopt the combination of the diffusion model and TTT (test-time training), based on the sample distribution of feature data under the laboratory conditions, and we use the pre-trained decoder to decode the data into a continuous potential representation of natural language for sampling, to achieve data regeneration. Subsequently, the TTT algorithm becomes a model with weights in the hidden state itself. The gradient step on the self-supervised loss is selected as the update rule, which is trained synchronously during the testing time, adhering to the concept of migration learning, to construct a high-dimensional mapping relationship between the feature parameters and the failure modes of the mechanical wear. The final validation results show that the diagnosis accuracy reaches more than 95% for six types of typical aero-engine mechanical wear faults. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25123745 |