Detecting load redistribution attacks via support vector models

A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detect...

Full description

Saved in:
Bibliographic Details
Published inIET Smart Grid Vol. 3; no. 5; pp. 551 - 560
Main Authors Chu, Zhigang, Kosut, Oliver, Sankar, Lalitha
Format Journal Article
LanguageEnglish
Published Durham The Institution of Engineering and Technology 01.10.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN2515-2947
2515-2947
DOI10.1049/iet-stg.2020.0030

Cover

Abstract A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilising loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks are detected can significantly mitigate the attack consequences.
AbstractList A machine learning‐based detection framework is proposed to detect a class of cyber‐attacks that redistribute loads by modifying measurements. The detection framework consists of a multi‐output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilising loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30‐bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks but also intelligently designed attacks. Moreover, using the SVR predicted loads to re‐dispatch generation when attacks are detected can significantly mitigate the attack consequences.
Author Sankar, Lalitha
Chu, Zhigang
Kosut, Oliver
Author_xml – sequence: 1
  givenname: Zhigang
  orcidid: 0000-0003-3390-3962
  surname: Chu
  fullname: Chu, Zhigang
  email: zchu2@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
– sequence: 2
  givenname: Oliver
  surname: Kosut
  fullname: Kosut, Oliver
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
– sequence: 3
  givenname: Lalitha
  surname: Sankar
  fullname: Sankar, Lalitha
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
BookMark eNqNkEtLHjEUhkOxUGv9Ad0NdD2fJ5e5dVOs1gsIXdSuw8llPmLHyTTJKN-_b8YpIkK1qxzC-7yH87wne6MfLSEfKWwoiO7I2VTGtN0wYLAB4PCG7LOKViXrRLP3ZH5HDmN0CjijTd00bJ98ObXJ6uTGbTF4NEWwxsUUnJqT82OBKaH-FYs7h0Wcp8mHVNzlvA_FrTd2iB_I2x6HaA__vgfk59m365OL8ur7-eXJ8VWpRUNF2ekWLHJsuVHGVKZue2RgECnvwGqmWNuqRhjoW9DAchx1rWpjjVZoWM8PyOXaazzeyCm4Www76dHJhw8fthJDcnqwkmdQW9NrW1FRK9bRToGqRG-sYFhD7mJr1zxOuLvHYXgspCAXozIbldmoXIzKxWiGPq3QFPzv2cYkb_wcxnyz5NAxzjjlVU7RNaWDjzHY_r-am2eMdgkX_SmgG14kP6_kvRvs7vVV8sf1Oft6BkBrkeFyhZfY4y3_XvYH_dC-Yw
CitedBy_id crossref_primary_10_1109_TII_2024_3393005
crossref_primary_10_1109_TSG_2024_3524455
crossref_primary_10_1109_JPROC_2022_3161053
crossref_primary_10_1016_j_epsr_2023_110067
crossref_primary_10_1109_ACCESS_2021_3064689
crossref_primary_10_1109_TIE_2023_3294646
crossref_primary_10_3390_en15186799
Cites_doi 10.1109/ACCESS.2019.2936816
10.1109/ACCESS.2019.2933020
10.1080/08839514.2019.1583452
10.1109/TPWRS.2015.2504950
10.1049/iet-gtd.2017.0294
10.1177/1748301818797061
10.1023/B:STCO.0000035301.49549.88
10.1109/CIEEC.2017.8388482
10.1109/PESGM.2017.8274276
10.1155/2017/8298531
10.1109/TSG.2011.2123925
10.1109/PESGM.2018.8586644
10.1017/CBO9780511804441
10.1109/TENCON.2017.8228016
10.1145/1653662.1653666
10.1109/APPEEC.2015.7381006
10.1109/TSG.2018.2817515
10.1109/TPWRS.2013.2286992
10.1023/A:1022627411411
10.1109/ISMA.2018.8330143
10.1109/TSG.2016.2552178
10.1109/TPWRS.2019.2942333
10.1109/TSG.2017.2784366
10.1109/JSTSP.2018.2846542
10.1109/TNNLS.2015.2404803
ContentType Journal Article
Copyright 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IDLOA
24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/iet-stg.2020.0030
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library Open Access
  url: https://digital-library.theiet.org/content/collections
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2515-2947
EndPage 560
ExternalDocumentID oai_doaj_org_article_36b6cedfce5146b2919b0b54fde42a60
10.1049/iet-stg.2020.0030
10_1049_iet_stg_2020_0030
STG2BF00164
Genre article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1449080
– fundername: Power System Engineering Research Center
  grantid: S-72
– fundername: Power System Engineering Research Center
  grantid: S-74
– fundername: Power System Engineering Research Center
  funderid: S‐72; S‐74
– fundername: National Science Foundation
  funderid: CNS‐1449080
GroupedDBID 24P
AAJGR
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
EBS
EJD
GROUPED_DOAJ
IDLOA
OCL
OK1
RIE
RUI
0R~
1OC
AAHHS
AAHJG
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
IGS
ITC
K7-
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4714-9c80ea3a83dbdd5d68fa20daa1390ec2b288b74d0f80c029c8ac6b6dedcbad2f3
IEDL.DBID 24P
ISSN 2515-2947
IngestDate Fri Oct 03 12:50:11 EDT 2025
Thu Oct 30 06:02:00 EDT 2025
Wed Aug 13 09:50:01 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Wed Oct 29 21:05:40 EDT 2025
Wed Jan 22 16:32:22 EST 2025
Tue Jan 05 21:45:14 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords IEEE 30-bus system
redistribute loads
cyber-attacks
support vector machines
detection framework
load redistribution attacks
multioutput support vector regression load predictor
regression analysis
historical load data
SVM detector
publicly available PJM zonal loads
support vector models
normal data
random LR attacks
SVR predictor
attack consequences
load forecasting
attack space
SVM attack detector
learning (artificial intelligence)
random attacks
subsequent support vector machine attack detector
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4714-9c80ea3a83dbdd5d68fa20daa1390ec2b288b74d0f80c029c8ac6b6dedcbad2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3390-3962
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2020.0030
PQID 3092323135
PQPubID 6853481
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_36b6cedfce5146b2919b0b54fde42a60
proquest_journals_3092323135
wiley_primary_10_1049_iet_stg_2020_0030_STG2BF00164
crossref_primary_10_1049_iet_stg_2020_0030
iet_journals_10_1049_iet_stg_2020_0030
crossref_citationtrail_10_1049_iet_stg_2020_0030
unpaywall_primary_10_1049_iet_stg_2020_0030
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Durham
PublicationPlace_xml – name: Durham
PublicationTitle IET Smart Grid
PublicationYear 2020
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
– name: Wiley
References An, Y.; Liu, D. (C6) 2019; 7
Li, X.; Hedman, K.W. (C9) 2020; 35
Che, L.; Liu, X.; Li, Z. (C8) 2019; 10
Yuan, Y.; Li, Z.; Ren, K. (C25) 2011; 2
Ozay, M.; Esnaola, I.; Yarman Vural, F.T. (C11) 2016; 27
Jia, L.; Kim, J.; Thomas, R.J. (C5) 2014; 29
Zhang, J.; Sankar, L. (C2) 2016; 7
Moslemi, R.; Mesbahi, A.; Velni, J.M. (C4) 2018; 12
Kirincic, V.; Ceperic, E.; Vlahinic, S. (C18) 2019; 33
Cortes, C.; Vapnik, V. (C15) 1995; 20
Liang, J.; Sankar, L.; Kosut, O. (C3) 2016; 31
Liu, C.; Zhou, M.; Wu, J. (C10) 2019; 10
Qiang, S.; Pu, Y. (C19) 2019; 13
Pedregosa, F.; Varoquaux, G.; Gramfort, A. (C27) 2011; 12
Smola, A.J.; Schölkopf, B. (C14) 2020; 14
Capuno, M.; Kim, J.S.; Song, H. (C20) 2017; 2017
Liu, C.; Wu, J.; Long, C. (C7) 2018; 12
An, D.; Yang, Q.; Liu, W. (C12) 2019; 7
1995; 20
2019; 7
2016; 7
2011; 2
2017; 2017
2019; 33
2019; 10
2019; 13
2009
2016; 31
2018
2020; 14
2017
2020; 35
2015
2004
2011; 12
2014; 29
2018; 12
2016; 27
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
Pedregosa F. (e_1_2_8_28_2) 2011; 12
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – volume: 7
  start-page: 2016
  issue: 4
  year: 2016
  end-page: 2025
  ident: C2
  article-title: Physical system consequences of unobservable state-and-topology cyber-physical attacks
  publication-title: IEEE Trans. Smart Grid
– volume: 2
  start-page: 382
  issue: 2
  year: 2011
  end-page: 390
  ident: C25
  article-title: Modeling load redistribution attacks in power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 33
  start-page: 517
  issue: 6
  year: 2019
  end-page: 530
  ident: C18
  article-title: Support vector machine state estimation
  publication-title: Appl. Artif. Intell.
– volume: 31
  start-page: 3864
  issue: 5
  year: 2016
  end-page: 3872
  ident: C3
  article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 8
  ident: C19
  article-title: Short-term power load forecasting based on support vector machine and particle swarm optimization
  publication-title: J. Algorithm. Comput. Technol.
– volume: 14
  start-page: 199
  year: 2020
  end-page: 222
  ident: C14
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 12
  start-page: 763
  issue: 4
  year: 2018
  end-page: 776
  ident: C7
  article-title: Reactance perturbation for detecting and identifying FDI attacks in power system state estimation
  publication-title: IEEE. J. Sel. Top. Signal. Process.
– volume: 10
  start-page: 1949
  issue: 2
  year: 2019
  end-page: 1959
  ident: C10
  article-title: Financially motivated FDI on SCED in real-time electricity markets: attacks and mitigation
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 110835
  year: 2019
  end-page: 110845
  ident: C12
  article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning-based approach
  publication-title: IEEE Access
– volume: 12
  start-page: 1263
  issue: 6
  year: 2018
  end-page: 1270
  ident: C4
  article-title: Design of robust profitable false data injection attacks in multi-settlement electricity markets
  publication-title: IET Gener. Transm. Distrib.
– volume: 29
  start-page: 627
  issue: 2
  year: 2014
  end-page: 636
  ident: C5
  article-title: Impact of data quality on real-time locational marginal price
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: C27
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 119804
  year: 2019
  end-page: 119812
  ident: C6
  article-title: Multivariate Gaussian-based false data detection against cyber-attacks
  publication-title: IEEE Access
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: C20
  article-title: Very short-term load forecasting using hybrid algebraic prediction and support vector regression
  publication-title: Math. Probl. Eng.
– volume: 10
  start-page: 3081
  issue: 3
  year: 2019
  end-page: 3091
  ident: C8
  article-title: Mitigating false data attacks induced overloads using a corrective dispatch scheme
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: 1773
  issue: 8
  year: 2016
  end-page: 1786
  ident: C11
  article-title: Machine learning methods for attack detection in the smart grid
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: C15
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 35
  start-page: 1549
  issue: 2
  year: 2020
  end-page: 1562
  ident: C9
  article-title: Enhancing power system cyber-security with systematic two-stage detection strategy
  publication-title: IEEE Trans. Power Syst.
– start-page: 406
  year: 2017
  end-page: 411
  article-title: Short‐and mid‐term load forecasting using machine learning models
– start-page: 1
  year: 2018
  end-page: 5
  article-title: Support vector regression based electricity peak load forecasting
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Very short‐term load forecasting using hybrid algebraic prediction and support vector regression
  publication-title: Math. Probl. Eng.
– volume: 7
  start-page: 2016
  issue: 4
  year: 2016
  end-page: 2025
  article-title: Physical system consequences of unobservable state‐and‐topology cyber‐physical attacks
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 110835
  year: 2019
  end-page: 110845
  article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning‐based approach
  publication-title: IEEE Access
– volume: 10
  start-page: 1949
  issue: 2
  year: 2019
  end-page: 1959
  article-title: Financially motivated FDI on SCED in real‐time electricity markets: attacks and mitigation
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 1263
  issue: 6
  year: 2018
  end-page: 1270
  article-title: Design of robust profitable false data injection attacks in multi‐settlement electricity markets
  publication-title: IET Gener. Transm. Distrib.
– volume: 31
  start-page: 3864
  issue: 5
  year: 2016
  end-page: 3872
  article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation
  publication-title: IEEE Trans. Power Syst.
– start-page: 1069
  year: 2017
  end-page: 1074
  article-title: Load prediction using support vector regression
– start-page: 1
  year: 2018
  end-page: 5
  article-title: Load redistribution attack detection using machine learning: a data‐driven approach
– volume: 13
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Short‐term power load forecasting based on support vector machine and particle swarm optimization
  publication-title: J. Algorithm. Comput. Technol.
– volume: 10
  start-page: 3081
  issue: 3
  year: 2019
  end-page: 3091
  article-title: Mitigating false data attacks induced overloads using a corrective dispatch scheme
  publication-title: IEEE Trans. Smart Grid
– volume: 29
  start-page: 627
  issue: 2
  year: 2014
  end-page: 636
  article-title: Impact of data quality on real‐time locational marginal price
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach. Learn.
– start-page: 1
  year: 2015
  end-page: 5
  article-title: Multi‐support vector machine power system transient stability assessment based on relief algorithm
– volume: 35
  start-page: 1549
  issue: 2
  year: 2020
  end-page: 1562
  article-title: Enhancing power system cyber‐security with systematic two‐stage detection strategy
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 199
  year: 2020
  end-page: 222
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– year: 2004
– volume: 12
  start-page: 763
  issue: 4
  year: 2018
  end-page: 776
  article-title: Reactance perturbation for detecting and identifying FDI attacks in power system state estimation
  publication-title: IEEE. J. Sel. Top. Signal. Process.
– volume: 27
  start-page: 1773
  issue: 8
  year: 2016
  end-page: 1786
  article-title: Machine learning methods for attack detection in the smart grid
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 21
  year: 2009
  end-page: 32
  article-title: False data injection attacks against state estimation in electric power grids
– volume: 7
  start-page: 119804
  year: 2019
  end-page: 119812
  article-title: Multivariate Gaussian‐based false data detection against cyber‐attacks
  publication-title: IEEE Access
– start-page: 1
  year: 2017
  end-page: 5
  article-title: Component outage estimation based on support vector machine
– volume: 2
  start-page: 382
  issue: 2
  year: 2011
  end-page: 390
  article-title: Modeling load redistribution attacks in power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 33
  start-page: 517
  issue: 6
  year: 2019
  end-page: 530
  article-title: Support vector machine state estimation
  publication-title: Appl. Artif. Intell.
– ident: e_1_2_8_7_2
  doi: 10.1109/ACCESS.2019.2936816
– ident: e_1_2_8_13_2
  doi: 10.1109/ACCESS.2019.2933020
– ident: e_1_2_8_19_2
  doi: 10.1080/08839514.2019.1583452
– ident: e_1_2_8_4_2
  doi: 10.1109/TPWRS.2015.2504950
– ident: e_1_2_8_5_2
  doi: 10.1049/iet-gtd.2017.0294
– ident: e_1_2_8_20_2
  doi: 10.1177/1748301818797061
– ident: e_1_2_8_15_2
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: e_1_2_8_22_2
  doi: 10.1109/CIEEC.2017.8388482
– ident: e_1_2_8_18_2
  doi: 10.1109/PESGM.2017.8274276
– ident: e_1_2_8_21_2
  doi: 10.1155/2017/8298531
– ident: e_1_2_8_26_2
  doi: 10.1109/TSG.2011.2123925
– ident: e_1_2_8_14_2
  doi: 10.1109/PESGM.2018.8586644
– ident: e_1_2_8_27_2
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_8_24_2
  doi: 10.1109/TENCON.2017.8228016
– ident: e_1_2_8_2_2
  doi: 10.1145/1653662.1653666
– ident: e_1_2_8_17_2
  doi: 10.1109/APPEEC.2015.7381006
– ident: e_1_2_8_9_2
  doi: 10.1109/TSG.2018.2817515
– ident: e_1_2_8_6_2
  doi: 10.1109/TPWRS.2013.2286992
– ident: e_1_2_8_16_2
  doi: 10.1023/A:1022627411411
– ident: e_1_2_8_25_2
– ident: e_1_2_8_23_2
  doi: 10.1109/ISMA.2018.8330143
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_28_2
  article-title: Scikit‐learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_3_2
  doi: 10.1109/TSG.2016.2552178
– ident: e_1_2_8_10_2
  doi: 10.1109/TPWRS.2019.2942333
– ident: e_1_2_8_11_2
  doi: 10.1109/TSG.2017.2784366
– ident: e_1_2_8_8_2
  doi: 10.1109/JSTSP.2018.2846542
– ident: e_1_2_8_12_2
  doi: 10.1109/TNNLS.2015.2404803
SSID ssib032176772
ssj0002810737
Score 2.1791596
Snippet A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection...
A machine learning‐based detection framework is proposed to detect a class of cyber‐attacks that redistribute loads by modifying measurements. The detection...
SourceID doaj
unpaywall
proquest
crossref
wiley
iet
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 551
SubjectTerms Algorithms
attack consequences
attack space
Classification
cyber-attacks
Design
detection framework
Electric power
historical load data
IEEE 30‐bus system
learning (artificial intelligence)
load forecasting
load redistribution attacks
Machine learning
multioutput support vector regression load predictor
Neural networks
normal data
publicly available PJM zonal loads
random attacks
random LR attacks
redistribute loads
regression analysis
Sensors
Spatial data
Special Section: Privacy and Security in Smart Grids
subsequent support vector machine attack detector
Support vector machines
support vector models
SVM attack detector
SVM detector
SVR predictor
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF-CA2tKKBVr5UHEARXhtJ-ucqi7tgiqVCyBxi8b2GIFWy4rNUvH3jJ2QLheWA7comjj2jK15Y4_fMPZdOj2wJpAF-jpkOqDLSiN1Fsh7C7Slg0Rg-vesOL3Uf67yq4VSXzEnrKEHbhR3pApbOPTBIbn2wsqyX1phcx08aglFitaFKReCqdu0ZURhjRp0x5jl0Q3W2ay-pohQxmSumPW84IgSXz-5F5J6ATXX5pMpPP6D8fgleE3eZ_SBbbawkf9suvuRreDkE9tYIBPcYj9-YTwQoGc-vgPP7-ON266eFYe6jtfp-cMN8Nl8GmE3f0hb9jxVw5l9Zpej3xfHp1lbHiEj_fZ1VjojEBQY5a33uS9MACk8AIE6gU5aaYwdaC-CEU5IEgdHyvTonQUvg_rCVid3E9xmPFeIGo0SoEEXPrcUNnphkTQuwUPeY-JZV5VrucNjCYtxlc6wdVmR4ipSbxXVG_lGRY8ddJ9MG-KM14SH0QCdYOS8Ti9oJlTtTKiWzYQe248Nt2tw9trf9p4t_F9aCYK6BHYVDfaws_pbuq7SvFguWZ1fnMjhKJGa7bzHgHfZemy8SS3cY6v1_Ry_EkSq7be0Gp4AACgNzQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdQeWAv06aBxlYmP6A9gCJc2wnOE-KrYwj2Aki8RWf7jJCqtqJpp_33nJ00qNIEvEXR2bHvLr7f2b47xnal04fWBJLAQIdMB3RZaaTOAllvgbZ0kBKYXv8pLu705X1-_xIe7R8fYq2MbLnjFnfLsYk8iFe3aR0-aHncFCQhfHtABNmsfiBfT8ZrWooc-HVJ3rnssfXfZ1eti0X6pQh-F4Qmu8PN_7RdMU8piz8ZHaJaAaAb8_EU_v2F0WgV0iabNPzEPrZgkh830v_M1nD8hR2dYTwYIJPERxPw_ClG3nZ1rTjUdQyr54tH4LP5NMJvvkhb9zxVxZltsrvh-e3pRdaWSciIzwOdlc4IBAVGeet97gsTQAoPQOBOoJNWGmMPtRfBCCckkYMrbOHROwteBrXFeuPJGL8ynitEjUYJ0KALn1tyH72wSMupBA_5NhNL7lSuzSEeS1mMqnSWrcuKWFURQ6vI0Jh3VGyzva7JtEmg8RrxSWR5RxhzX6cXpABV-ytVigbv0AeHBPYKK8tBaYXNdfCoJRTUyc_Y8VJPXvtafynTF2olCPIS6FU02f1Ozu8Zukqa8DZldXP7S54MU3Kzb-8d63f2IT431wj7rFc_zXGH4FBtf7Ra_gz4uQfL
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKegAOqLxEoFQ-IA6gVR3bu_EeUEXahgqJCEEr9bYav6pKURKSTRH_nhlnd9teArfVarxrzdiez57xN4y9k04PrYlogYGOmY7BZaWROovovUWwpYNEYPptUpxd6K-X-eUOm7R3YSitsl0T00Lt547OyA-VQCiCYETlR4tfGVWNouhqW0IDmtIK_lOiGHvAdiUxY_XY7uh08v1Hd-oiDW531LALb5aH16HOVvUV7hQlJXlRNvQdB5V4_NHtoNQ9CPpwPVvAn98wnd4HtckrjffYkwZO8s8b-z9lO2H2jD2-QzL4nB2dBAoU4DOfzsHzJd3E7epccahrumbPb66Br9YLguP8Jh3l81QlZ_WCXYxPz4_PsqZsQoZ6H-isdEYEUGCUt97nvjARpPAACPZEcNJKY-xQexGNcEKiOLjCFj54Z8HLqF6y3mw-C68Yz1UIOhglQIMufG5xO-mFDbi8SvCQ95lodVW5hlOcSltMqxTb1mWFiqtQvRWpl3hIRZ996JosNoQa24RHZIBOkLiw04v58qpqplalsPMu-OgCgr_CynJQWmFzHX3QEgr8yHv6cDM3V9v-tt9a-Fb6dtz12cfO6v_TdZXGxb8lq5_nX-RonMjOXm_vwhv2iJptkgn3Wa9ersNbBEW1PWhG-l8GSAru
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQegAOLU_RB8gHxAG0kWN7N94TaoFQIVEh0UjltBrb44KIkijZFNFf37F3sxCECkjcrNX4_Zhv1p5vGHsqnR5aE2gGBjpkOqDLSiN1Fkh7C7Slg0Rg-v6kOB7rd2f5WetZl3xhsG5Zbj73G66I7udb3CXp7I6bfe5Dc-Y3FqguY85sWZ-TySfjay1FdvxWkRNA77Gt8cmHw08xzBxp70yWetjdb_4m34aGSkT-pHdIagOD3lxN5_D9G0wmm6g2qaXRDqvXHWpeo3ztr2rbd5e_cD3-5x7fYdstjOWHzbq7y27g9B67_RO54X328jXGCwpK88kMPF9ED-AuvhaHuo7u_fziC_Dlah7NAH6RrhB4is6zfMDGozenr46zNlxDRvM90FnpjEBQYJS33ue-MAGk8AAEMgU6aaUxdqi9CEY4IUkcXGELj95Z8DKoh6w3nU3xEeO5QtRolAANuvC5JTPWC4t0rEvwkO8ysZ6iyrVc5jGkxqRKd-q6rGhsKhqbKo5N5D8Vu-x5l2XeEHlcJ3wU570TjBzc6cNscV61W7pS1HiHPjgk0FlYWQ5KK2yug0ctoaBCnsWC2zNheV1tB-uF9UNaCYLeBL4VdfZFt9j-pukqrZs_S1YfT9_Ko1EiWdv7pzr22a2Ybt40HrBevVjhY8JmtX3S7rUr_pc5MA
  priority: 102
  providerName: Unpaywall
Title Detecting load redistribution attacks via support vector models
URI http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2020.0030
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2020.0030
https://www.proquest.com/docview/3092323135
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-stg.2020.0030
https://doaj.org/article/36b6cedfce5146b2919b0b54fde42a60
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: ADMLS
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: IDLOA
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: BENPR
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: AVUZU
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: 24P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CckhzKGnakjSp2UPpoUV0vbuSV6cQJ3EetMa0MaQnMfsyAWMbW07Iv8_sSlZrCmnpRY9ltJJmNJpvX98Q8oEb2dHKowXa0ifSO5PkisvEY_RmTucGIoHpt352OZTXt-ntBjldrYWp-CGaDrfgGfF_HRwcdJWFBEEtGvHOlcmiHGETj4fZWQLb7VttxDPhM-dy0HS0cIUtnMidiaE8TXguO83oZv7lj1rW4lOk8ceog1JrCHR7OZnB4wOMx-uYNgal3i55WaNJelKZ_xXZcJM9svMbx-BrcnzmwjgBHtPxFCydh4W4TZorCmUZVtnT-zugi-UsoHF6H3vyaUySs3hDhr3zm9PLpM6akKDa2zLJjWIOBChhtbWpzZQHziwA6oY5wzVXSnekZV4xwziKg8l0Zp01Giz34i3ZnEwnbp_QVDgnnRIMJMjMphpbk5Zph39XDhbSA8JWuipMTSkeMluMizi0LfMCFVegeoug3kBDyg7Ip-aSWcWn8ZxwNxigEQxU2LFgOh8VtWcVAh_eOOuNQ-yXaZ63c810Kr11kkOGlXwMFdeuuXjubkcrC_-SFgwRMGJggS_7ubH6vzy6iN_F3yWLHzcXvNuLXGfv_uuqQ_IilFdTDI_IZjlfuvcIlUrdiq6AW9W7aJGt7nl_8L0Vux3w7Orsa9wP-4OTn09onBLK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPLA9oH1q3WDzw7aHTRGu7aTOA0LroCsDqmkrEm_Z-SMIqWq7JgXxz_G3cXaTAC_dXniLosvFurPPv_Od7wj5wI3saJWjBtoyj2TuTJQqLqMcd2_mdGogFDA9HiT9E_njND5dIdf1XRifVlnbxGCo7cT4M_JtwRCKIBgR8e70b-S7Rvnoat1CA6rWCnYnlBirLnYcuqtLdOGKnYM91PdHznv7w2_9qOoyEOEw2zJKjWIOBChhtbWxTVQOnFkAxEbMGa65UrojLcsVM4wjOZhEJ9ZZo8HyXCDfR2RNCpmi87fW3R_8_NWc8nCF7pXoNOHUdPvclVFRnqFnyn1Smc--vrMhhr4BuM0h1T3Iuz4fT-HqEkaj-yA67IK9p2Sjgq_062K-PSMrbvycPLlT1PAF2d1zPjCBz3Q0AUtn_uZv01eLQln6a_304hxoMZ96-E8vQuiAhq48xUty8iACfEVWx5Oxe01oLJyTTgkGEmRiY43uq2XaoTnnYCFuEVbLKjNVDXPfSmOUhVi6TDMUXIbizbx4fd1T1iKfm0-miwIey4i7XgENoa-9HV5MZmdZtZQzgYM3zubGIdhMNE_bqWY6lrl1kkOCTD55xpUtKJb9bbPW8C317TxvkS-N1v9n6CLMi39TZr-H33m3F4qrvVk-hPdkvT88PsqODgaHb8ljz2KRyLhJVsvZ3G0hICv1u2rWU_LnoRfaDTZTSmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVOJxQDxFoS17QBxAKxzbu_GeqpYQyqtCokEVF2tsj6tKURIlmyL-PWPvZkuEVBC31Wrs9c54PN_48Zmx58KpgdWBLNBXIVcBXV5pofJA0ZujrRwkAtPPJ-XxWH04K8622HB9Fqbhh-gm3KJnpPE6OjjOfWgSThVJMi-wzpf1OeV4Im7PkpS4b1M856rHtg-_jb-Pu7kWoSnJSfSZFM2LXFRq0C1wVq__qGcjRCUmfwo8JLUBQm-upnP4-QMmk01Ym-LS6C670wLK7LDpAffYFk7vs9u_0Qw-YAdDjEsF9JxNZuCzRTyL2910lUFdx4P22eUFZMvVPALy7DJN5mfpnpzlQzYevT19c5y3FyfkpPm-yiunOYIELb31vvClDiC4ByC4x9EJK7S2A-V50NxxQeLgSlt69M6CF0E-Yr3pbIqPWVZIRIVaclCgSl9YSig9t0gDrAAPxQ7ja10Z17KKx8stJiatbqvKkOIMqddE9UYmUr7DXnZF5g2lxnXCR9EAnWBkw04vZotz0zqXkdR4hz44JPhXWlH1K8ttoYJHJaCkSl7EilvvXF73td21ha-kJScQTDBY0s--6qz-L02XqV_8XdJ8PX0njkaJ7uzJf5V6xm58GY7Mp_cnH5-yW1Gk2XC4y3r1YoV7BJxqu9_6xS997RDZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQegAOLU_RB8gHxAG0kWN7N94TaoFQIVEh0UjltBrb44KIkijZFNFf37F3sxCECkjcrNX4_Zhv1p5vGHsqnR5aE2gGBjpkOqDLSiN1Fkh7C7Slg0Rg-v6kOB7rd2f5WetZl3xhsG5Zbj73G66I7udb3CXp7I6bfe5Dc-Y3FqguY85sWZ-TySfjay1FdvxWkRNA77Gt8cmHw08xzBxp70yWetjdb_4m34aGSkT-pHdIagOD3lxN5_D9G0wmm6g2qaXRDqvXHWpeo3ztr2rbd5e_cD3-5x7fYdstjOWHzbq7y27g9B67_RO54X328jXGCwpK88kMPF9ED-AuvhaHuo7u_fziC_Dlah7NAH6RrhB4is6zfMDGozenr46zNlxDRvM90FnpjEBQYJS33ue-MAGk8AAEMgU6aaUxdqi9CEY4IUkcXGELj95Z8DKoh6w3nU3xEeO5QtRolAANuvC5JTPWC4t0rEvwkO8ysZ6iyrVc5jGkxqRKd-q6rGhsKhqbKo5N5D8Vu-x5l2XeEHlcJ3wU570TjBzc6cNscV61W7pS1HiHPjgk0FlYWQ5KK2yug0ctoaBCnsWC2zNheV1tB-uF9UNaCYLeBL4VdfZFt9j-pukqrZs_S1YfT9_Ko1EiWdv7pzr22a2Ybt40HrBevVjhY8JmtX3S7rUr_pc5MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+load+redistribution+attacks+via+support+vector+models&rft.jtitle=IET+smart+grid&rft.au=Chu%2C+Zhigang&rft.au=Kosut%2C+Oliver&rft.au=Sankar%2C+Lalitha&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=2515-2947&rft.eissn=2515-2947&rft.volume=3&rft.issue=5&rft.spage=551&rft.epage=560&rft_id=info:doi/10.1049%2Fiet-stg.2020.0030&rft.externalDBID=10.1049%252Fiet-stg.2020.0030&rft.externalDocID=STG2BF00164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2947&client=summon