Detecting load redistribution attacks via support vector models
A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detect...
Saved in:
| Published in | IET Smart Grid Vol. 3; no. 5; pp. 551 - 560 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Durham
The Institution of Engineering and Technology
01.10.2020
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2515-2947 2515-2947 |
| DOI | 10.1049/iet-stg.2020.0030 |
Cover
| Abstract | A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilising loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks are detected can significantly mitigate the attack consequences. |
|---|---|
| AbstractList | A machine learning‐based detection framework is proposed to detect a class of cyber‐attacks that redistribute loads by modifying measurements. The detection framework consists of a multi‐output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilising loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30‐bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks but also intelligently designed attacks. Moreover, using the SVR predicted loads to re‐dispatch generation when attacks are detected can significantly mitigate the attack consequences. |
| Author | Sankar, Lalitha Chu, Zhigang Kosut, Oliver |
| Author_xml | – sequence: 1 givenname: Zhigang orcidid: 0000-0003-3390-3962 surname: Chu fullname: Chu, Zhigang email: zchu2@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA – sequence: 2 givenname: Oliver surname: Kosut fullname: Kosut, Oliver organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA – sequence: 3 givenname: Lalitha surname: Sankar fullname: Sankar, Lalitha organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA |
| BookMark | eNqNkEtLHjEUhkOxUGv9Ad0NdD2fJ5e5dVOs1gsIXdSuw8llPmLHyTTJKN-_b8YpIkK1qxzC-7yH87wne6MfLSEfKWwoiO7I2VTGtN0wYLAB4PCG7LOKViXrRLP3ZH5HDmN0CjijTd00bJ98ObXJ6uTGbTF4NEWwxsUUnJqT82OBKaH-FYs7h0Wcp8mHVNzlvA_FrTd2iB_I2x6HaA__vgfk59m365OL8ur7-eXJ8VWpRUNF2ekWLHJsuVHGVKZue2RgECnvwGqmWNuqRhjoW9DAchx1rWpjjVZoWM8PyOXaazzeyCm4Www76dHJhw8fthJDcnqwkmdQW9NrW1FRK9bRToGqRG-sYFhD7mJr1zxOuLvHYXgspCAXozIbldmoXIzKxWiGPq3QFPzv2cYkb_wcxnyz5NAxzjjlVU7RNaWDjzHY_r-am2eMdgkX_SmgG14kP6_kvRvs7vVV8sf1Oft6BkBrkeFyhZfY4y3_XvYH_dC-Yw |
| CitedBy_id | crossref_primary_10_1109_TII_2024_3393005 crossref_primary_10_1109_TSG_2024_3524455 crossref_primary_10_1109_JPROC_2022_3161053 crossref_primary_10_1016_j_epsr_2023_110067 crossref_primary_10_1109_ACCESS_2021_3064689 crossref_primary_10_1109_TIE_2023_3294646 crossref_primary_10_3390_en15186799 |
| Cites_doi | 10.1109/ACCESS.2019.2936816 10.1109/ACCESS.2019.2933020 10.1080/08839514.2019.1583452 10.1109/TPWRS.2015.2504950 10.1049/iet-gtd.2017.0294 10.1177/1748301818797061 10.1023/B:STCO.0000035301.49549.88 10.1109/CIEEC.2017.8388482 10.1109/PESGM.2017.8274276 10.1155/2017/8298531 10.1109/TSG.2011.2123925 10.1109/PESGM.2018.8586644 10.1017/CBO9780511804441 10.1109/TENCON.2017.8228016 10.1145/1653662.1653666 10.1109/APPEEC.2015.7381006 10.1109/TSG.2018.2817515 10.1109/TPWRS.2013.2286992 10.1023/A:1022627411411 10.1109/ISMA.2018.8330143 10.1109/TSG.2016.2552178 10.1109/TPWRS.2019.2942333 10.1109/TSG.2017.2784366 10.1109/JSTSP.2018.2846542 10.1109/TNNLS.2015.2404803 |
| ContentType | Journal Article |
| Copyright | 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IDLOA 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/iet-stg.2020.0030 |
| DatabaseName | IET Digital Library Open Access Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: IDLOA name: IET Digital Library Open Access url: https://digital-library.theiet.org/content/collections sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2515-2947 |
| EndPage | 560 |
| ExternalDocumentID | oai_doaj_org_article_36b6cedfce5146b2919b0b54fde42a60 10.1049/iet-stg.2020.0030 10_1049_iet_stg_2020_0030 STG2BF00164 |
| Genre | article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CNS-1449080 – fundername: Power System Engineering Research Center grantid: S-72 – fundername: Power System Engineering Research Center grantid: S-74 – fundername: Power System Engineering Research Center funderid: S‐72; S‐74 – fundername: National Science Foundation funderid: CNS‐1449080 |
| GroupedDBID | 24P AAJGR ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BFFAM EBS EJD GROUPED_DOAJ IDLOA OCL OK1 RIE RUI 0R~ 1OC AAHHS AAHJG ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU HCIFZ IAO IGS ITC K7- M7S M~E PIMPY PTHSS ROL AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4714-9c80ea3a83dbdd5d68fa20daa1390ec2b288b74d0f80c029c8ac6b6dedcbad2f3 |
| IEDL.DBID | 24P |
| ISSN | 2515-2947 |
| IngestDate | Fri Oct 03 12:50:11 EDT 2025 Thu Oct 30 06:02:00 EDT 2025 Wed Aug 13 09:50:01 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Wed Oct 29 21:05:40 EDT 2025 Wed Jan 22 16:32:22 EST 2025 Tue Jan 05 21:45:14 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | IEEE 30-bus system redistribute loads cyber-attacks support vector machines detection framework load redistribution attacks multioutput support vector regression load predictor regression analysis historical load data SVM detector publicly available PJM zonal loads support vector models normal data random LR attacks SVR predictor attack consequences load forecasting attack space SVM attack detector learning (artificial intelligence) random attacks subsequent support vector machine attack detector |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4714-9c80ea3a83dbdd5d68fa20daa1390ec2b288b74d0f80c029c8ac6b6dedcbad2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3390-3962 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2020.0030 |
| PQID | 3092323135 |
| PQPubID | 6853481 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_36b6cedfce5146b2919b0b54fde42a60 proquest_journals_3092323135 wiley_primary_10_1049_iet_stg_2020_0030_STG2BF00164 crossref_primary_10_1049_iet_stg_2020_0030 iet_journals_10_1049_iet_stg_2020_0030 crossref_citationtrail_10_1049_iet_stg_2020_0030 unpaywall_primary_10_1049_iet_stg_2020_0030 |
| ProviderPackageCode | IDLOA RUI |
| PublicationCentury | 2000 |
| PublicationDate | October 2020 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Durham |
| PublicationPlace_xml | – name: Durham |
| PublicationTitle | IET Smart Grid |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc – name: Wiley |
| References | An, Y.; Liu, D. (C6) 2019; 7 Li, X.; Hedman, K.W. (C9) 2020; 35 Che, L.; Liu, X.; Li, Z. (C8) 2019; 10 Yuan, Y.; Li, Z.; Ren, K. (C25) 2011; 2 Ozay, M.; Esnaola, I.; Yarman Vural, F.T. (C11) 2016; 27 Jia, L.; Kim, J.; Thomas, R.J. (C5) 2014; 29 Zhang, J.; Sankar, L. (C2) 2016; 7 Moslemi, R.; Mesbahi, A.; Velni, J.M. (C4) 2018; 12 Kirincic, V.; Ceperic, E.; Vlahinic, S. (C18) 2019; 33 Cortes, C.; Vapnik, V. (C15) 1995; 20 Liang, J.; Sankar, L.; Kosut, O. (C3) 2016; 31 Liu, C.; Zhou, M.; Wu, J. (C10) 2019; 10 Qiang, S.; Pu, Y. (C19) 2019; 13 Pedregosa, F.; Varoquaux, G.; Gramfort, A. (C27) 2011; 12 Smola, A.J.; Schölkopf, B. (C14) 2020; 14 Capuno, M.; Kim, J.S.; Song, H. (C20) 2017; 2017 Liu, C.; Wu, J.; Long, C. (C7) 2018; 12 An, D.; Yang, Q.; Liu, W. (C12) 2019; 7 1995; 20 2019; 7 2016; 7 2011; 2 2017; 2017 2019; 33 2019; 10 2019; 13 2009 2016; 31 2018 2020; 14 2017 2020; 35 2015 2004 2011; 12 2014; 29 2018; 12 2016; 27 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 Pedregosa F. (e_1_2_8_28_2) 2011; 12 e_1_2_8_10_2 e_1_2_8_11_2 |
| References_xml | – volume: 7 start-page: 2016 issue: 4 year: 2016 end-page: 2025 ident: C2 article-title: Physical system consequences of unobservable state-and-topology cyber-physical attacks publication-title: IEEE Trans. Smart Grid – volume: 2 start-page: 382 issue: 2 year: 2011 end-page: 390 ident: C25 article-title: Modeling load redistribution attacks in power systems publication-title: IEEE Trans. Smart Grid – volume: 33 start-page: 517 issue: 6 year: 2019 end-page: 530 ident: C18 article-title: Support vector machine state estimation publication-title: Appl. Artif. Intell. – volume: 31 start-page: 3864 issue: 5 year: 2016 end-page: 3872 ident: C3 article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation publication-title: IEEE Trans. Power Syst. – volume: 13 start-page: 1 year: 2019 end-page: 8 ident: C19 article-title: Short-term power load forecasting based on support vector machine and particle swarm optimization publication-title: J. Algorithm. Comput. Technol. – volume: 14 start-page: 199 year: 2020 end-page: 222 ident: C14 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 12 start-page: 763 issue: 4 year: 2018 end-page: 776 ident: C7 article-title: Reactance perturbation for detecting and identifying FDI attacks in power system state estimation publication-title: IEEE. J. Sel. Top. Signal. Process. – volume: 10 start-page: 1949 issue: 2 year: 2019 end-page: 1959 ident: C10 article-title: Financially motivated FDI on SCED in real-time electricity markets: attacks and mitigation publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 110835 year: 2019 end-page: 110845 ident: C12 article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning-based approach publication-title: IEEE Access – volume: 12 start-page: 1263 issue: 6 year: 2018 end-page: 1270 ident: C4 article-title: Design of robust profitable false data injection attacks in multi-settlement electricity markets publication-title: IET Gener. Transm. Distrib. – volume: 29 start-page: 627 issue: 2 year: 2014 end-page: 636 ident: C5 article-title: Impact of data quality on real-time locational marginal price publication-title: IEEE Trans. Power Syst. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: C27 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 119804 year: 2019 end-page: 119812 ident: C6 article-title: Multivariate Gaussian-based false data detection against cyber-attacks publication-title: IEEE Access – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: C20 article-title: Very short-term load forecasting using hybrid algebraic prediction and support vector regression publication-title: Math. Probl. Eng. – volume: 10 start-page: 3081 issue: 3 year: 2019 end-page: 3091 ident: C8 article-title: Mitigating false data attacks induced overloads using a corrective dispatch scheme publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: 1773 issue: 8 year: 2016 end-page: 1786 ident: C11 article-title: Machine learning methods for attack detection in the smart grid publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: C15 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 35 start-page: 1549 issue: 2 year: 2020 end-page: 1562 ident: C9 article-title: Enhancing power system cyber-security with systematic two-stage detection strategy publication-title: IEEE Trans. Power Syst. – start-page: 406 year: 2017 end-page: 411 article-title: Short‐and mid‐term load forecasting using machine learning models – start-page: 1 year: 2018 end-page: 5 article-title: Support vector regression based electricity peak load forecasting – volume: 2017 start-page: 1 year: 2017 end-page: 9 article-title: Very short‐term load forecasting using hybrid algebraic prediction and support vector regression publication-title: Math. Probl. Eng. – volume: 7 start-page: 2016 issue: 4 year: 2016 end-page: 2025 article-title: Physical system consequences of unobservable state‐and‐topology cyber‐physical attacks publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 110835 year: 2019 end-page: 110845 article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning‐based approach publication-title: IEEE Access – volume: 10 start-page: 1949 issue: 2 year: 2019 end-page: 1959 article-title: Financially motivated FDI on SCED in real‐time electricity markets: attacks and mitigation publication-title: IEEE Trans. Smart Grid – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 1263 issue: 6 year: 2018 end-page: 1270 article-title: Design of robust profitable false data injection attacks in multi‐settlement electricity markets publication-title: IET Gener. Transm. Distrib. – volume: 31 start-page: 3864 issue: 5 year: 2016 end-page: 3872 article-title: Vulnerability analysis and consequences of false data injection attack on power system state estimation publication-title: IEEE Trans. Power Syst. – start-page: 1069 year: 2017 end-page: 1074 article-title: Load prediction using support vector regression – start-page: 1 year: 2018 end-page: 5 article-title: Load redistribution attack detection using machine learning: a data‐driven approach – volume: 13 start-page: 1 year: 2019 end-page: 8 article-title: Short‐term power load forecasting based on support vector machine and particle swarm optimization publication-title: J. Algorithm. Comput. Technol. – volume: 10 start-page: 3081 issue: 3 year: 2019 end-page: 3091 article-title: Mitigating false data attacks induced overloads using a corrective dispatch scheme publication-title: IEEE Trans. Smart Grid – volume: 29 start-page: 627 issue: 2 year: 2014 end-page: 636 article-title: Impact of data quality on real‐time locational marginal price publication-title: IEEE Trans. Power Syst. – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach. Learn. – start-page: 1 year: 2015 end-page: 5 article-title: Multi‐support vector machine power system transient stability assessment based on relief algorithm – volume: 35 start-page: 1549 issue: 2 year: 2020 end-page: 1562 article-title: Enhancing power system cyber‐security with systematic two‐stage detection strategy publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 199 year: 2020 end-page: 222 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – year: 2004 – volume: 12 start-page: 763 issue: 4 year: 2018 end-page: 776 article-title: Reactance perturbation for detecting and identifying FDI attacks in power system state estimation publication-title: IEEE. J. Sel. Top. Signal. Process. – volume: 27 start-page: 1773 issue: 8 year: 2016 end-page: 1786 article-title: Machine learning methods for attack detection in the smart grid publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 21 year: 2009 end-page: 32 article-title: False data injection attacks against state estimation in electric power grids – volume: 7 start-page: 119804 year: 2019 end-page: 119812 article-title: Multivariate Gaussian‐based false data detection against cyber‐attacks publication-title: IEEE Access – start-page: 1 year: 2017 end-page: 5 article-title: Component outage estimation based on support vector machine – volume: 2 start-page: 382 issue: 2 year: 2011 end-page: 390 article-title: Modeling load redistribution attacks in power systems publication-title: IEEE Trans. Smart Grid – volume: 33 start-page: 517 issue: 6 year: 2019 end-page: 530 article-title: Support vector machine state estimation publication-title: Appl. Artif. Intell. – ident: e_1_2_8_7_2 doi: 10.1109/ACCESS.2019.2936816 – ident: e_1_2_8_13_2 doi: 10.1109/ACCESS.2019.2933020 – ident: e_1_2_8_19_2 doi: 10.1080/08839514.2019.1583452 – ident: e_1_2_8_4_2 doi: 10.1109/TPWRS.2015.2504950 – ident: e_1_2_8_5_2 doi: 10.1049/iet-gtd.2017.0294 – ident: e_1_2_8_20_2 doi: 10.1177/1748301818797061 – ident: e_1_2_8_15_2 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: e_1_2_8_22_2 doi: 10.1109/CIEEC.2017.8388482 – ident: e_1_2_8_18_2 doi: 10.1109/PESGM.2017.8274276 – ident: e_1_2_8_21_2 doi: 10.1155/2017/8298531 – ident: e_1_2_8_26_2 doi: 10.1109/TSG.2011.2123925 – ident: e_1_2_8_14_2 doi: 10.1109/PESGM.2018.8586644 – ident: e_1_2_8_27_2 doi: 10.1017/CBO9780511804441 – ident: e_1_2_8_24_2 doi: 10.1109/TENCON.2017.8228016 – ident: e_1_2_8_2_2 doi: 10.1145/1653662.1653666 – ident: e_1_2_8_17_2 doi: 10.1109/APPEEC.2015.7381006 – ident: e_1_2_8_9_2 doi: 10.1109/TSG.2018.2817515 – ident: e_1_2_8_6_2 doi: 10.1109/TPWRS.2013.2286992 – ident: e_1_2_8_16_2 doi: 10.1023/A:1022627411411 – ident: e_1_2_8_25_2 – ident: e_1_2_8_23_2 doi: 10.1109/ISMA.2018.8330143 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_28_2 article-title: Scikit‐learn: machine learning in python publication-title: J. Mach. Learn. Res. – ident: e_1_2_8_3_2 doi: 10.1109/TSG.2016.2552178 – ident: e_1_2_8_10_2 doi: 10.1109/TPWRS.2019.2942333 – ident: e_1_2_8_11_2 doi: 10.1109/TSG.2017.2784366 – ident: e_1_2_8_8_2 doi: 10.1109/JSTSP.2018.2846542 – ident: e_1_2_8_12_2 doi: 10.1109/TNNLS.2015.2404803 |
| SSID | ssib032176772 ssj0002810737 |
| Score | 2.1791596 |
| Snippet | A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection... A machine learning‐based detection framework is proposed to detect a class of cyber‐attacks that redistribute loads by modifying measurements. The detection... |
| SourceID | doaj unpaywall proquest crossref wiley iet |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 551 |
| SubjectTerms | Algorithms attack consequences attack space Classification cyber-attacks Design detection framework Electric power historical load data IEEE 30‐bus system learning (artificial intelligence) load forecasting load redistribution attacks Machine learning multioutput support vector regression load predictor Neural networks normal data publicly available PJM zonal loads random attacks random LR attacks redistribute loads regression analysis Sensors Spatial data Special Section: Privacy and Security in Smart Grids subsequent support vector machine attack detector Support vector machines support vector models SVM attack detector SVM detector SVR predictor |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF-CA2tKKBVr5UHEARXhtJ-ucqi7tgiqVCyBxi8b2GIFWy4rNUvH3jJ2QLheWA7comjj2jK15Y4_fMPZdOj2wJpAF-jpkOqDLSiN1Fsh7C7Slg0Rg-vesOL3Uf67yq4VSXzEnrKEHbhR3pApbOPTBIbn2wsqyX1phcx08aglFitaFKReCqdu0ZURhjRp0x5jl0Q3W2ay-pohQxmSumPW84IgSXz-5F5J6ATXX5pMpPP6D8fgleE3eZ_SBbbawkf9suvuRreDkE9tYIBPcYj9-YTwQoGc-vgPP7-ON266eFYe6jtfp-cMN8Nl8GmE3f0hb9jxVw5l9Zpej3xfHp1lbHiEj_fZ1VjojEBQY5a33uS9MACk8AIE6gU5aaYwdaC-CEU5IEgdHyvTonQUvg_rCVid3E9xmPFeIGo0SoEEXPrcUNnphkTQuwUPeY-JZV5VrucNjCYtxlc6wdVmR4ipSbxXVG_lGRY8ddJ9MG-KM14SH0QCdYOS8Ti9oJlTtTKiWzYQe248Nt2tw9trf9p4t_F9aCYK6BHYVDfaws_pbuq7SvFguWZ1fnMjhKJGa7bzHgHfZemy8SS3cY6v1_Ry_EkSq7be0Gp4AACgNzQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdQeWAv06aBxlYmP6A9gCJc2wnOE-KrYwj2Aki8RWf7jJCqtqJpp_33nJ00qNIEvEXR2bHvLr7f2b47xnal04fWBJLAQIdMB3RZaaTOAllvgbZ0kBKYXv8pLu705X1-_xIe7R8fYq2MbLnjFnfLsYk8iFe3aR0-aHncFCQhfHtABNmsfiBfT8ZrWooc-HVJ3rnssfXfZ1eti0X6pQh-F4Qmu8PN_7RdMU8piz8ZHaJaAaAb8_EU_v2F0WgV0iabNPzEPrZgkh830v_M1nD8hR2dYTwYIJPERxPw_ClG3nZ1rTjUdQyr54tH4LP5NMJvvkhb9zxVxZltsrvh-e3pRdaWSciIzwOdlc4IBAVGeet97gsTQAoPQOBOoJNWGmMPtRfBCCckkYMrbOHROwteBrXFeuPJGL8ynitEjUYJ0KALn1tyH72wSMupBA_5NhNL7lSuzSEeS1mMqnSWrcuKWFURQ6vI0Jh3VGyzva7JtEmg8RrxSWR5RxhzX6cXpABV-ytVigbv0AeHBPYKK8tBaYXNdfCoJRTUyc_Y8VJPXvtafynTF2olCPIS6FU02f1Ozu8Zukqa8DZldXP7S54MU3Kzb-8d63f2IT431wj7rFc_zXGH4FBtf7Ra_gz4uQfL priority: 102 providerName: Institution of Engineering and Technology – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKegAOqLxEoFQ-IA6gVR3bu_EeUEXahgqJCEEr9bYav6pKURKSTRH_nhlnd9teArfVarxrzdiez57xN4y9k04PrYlogYGOmY7BZaWROovovUWwpYNEYPptUpxd6K-X-eUOm7R3YSitsl0T00Lt547OyA-VQCiCYETlR4tfGVWNouhqW0IDmtIK_lOiGHvAdiUxY_XY7uh08v1Hd-oiDW531LALb5aH16HOVvUV7hQlJXlRNvQdB5V4_NHtoNQ9CPpwPVvAn98wnd4HtckrjffYkwZO8s8b-z9lO2H2jD2-QzL4nB2dBAoU4DOfzsHzJd3E7epccahrumbPb66Br9YLguP8Jh3l81QlZ_WCXYxPz4_PsqZsQoZ6H-isdEYEUGCUt97nvjARpPAACPZEcNJKY-xQexGNcEKiOLjCFj54Z8HLqF6y3mw-C68Yz1UIOhglQIMufG5xO-mFDbi8SvCQ95lodVW5hlOcSltMqxTb1mWFiqtQvRWpl3hIRZ996JosNoQa24RHZIBOkLiw04v58qpqplalsPMu-OgCgr_CynJQWmFzHX3QEgr8yHv6cDM3V9v-tt9a-Fb6dtz12cfO6v_TdZXGxb8lq5_nX-RonMjOXm_vwhv2iJptkgn3Wa9ersNbBEW1PWhG-l8GSAru priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQegAOLU_RB8gHxAG0kWN7N94TaoFQIVEh0UjltBrb44KIkijZFNFf37F3sxCECkjcrNX4_Zhv1p5vGHsqnR5aE2gGBjpkOqDLSiN1Fkh7C7Slg0Rg-v6kOB7rd2f5WetZl3xhsG5Zbj73G66I7udb3CXp7I6bfe5Dc-Y3FqguY85sWZ-TySfjay1FdvxWkRNA77Gt8cmHw08xzBxp70yWetjdb_4m34aGSkT-pHdIagOD3lxN5_D9G0wmm6g2qaXRDqvXHWpeo3ztr2rbd5e_cD3-5x7fYdstjOWHzbq7y27g9B67_RO54X328jXGCwpK88kMPF9ED-AuvhaHuo7u_fziC_Dlah7NAH6RrhB4is6zfMDGozenr46zNlxDRvM90FnpjEBQYJS33ue-MAGk8AAEMgU6aaUxdqi9CEY4IUkcXGELj95Z8DKoh6w3nU3xEeO5QtRolAANuvC5JTPWC4t0rEvwkO8ysZ6iyrVc5jGkxqRKd-q6rGhsKhqbKo5N5D8Vu-x5l2XeEHlcJ3wU570TjBzc6cNscV61W7pS1HiHPjgk0FlYWQ5KK2yug0ctoaBCnsWC2zNheV1tB-uF9UNaCYLeBL4VdfZFt9j-pukqrZs_S1YfT9_Ko1EiWdv7pzr22a2Ybt40HrBevVjhY8JmtX3S7rUr_pc5MA priority: 102 providerName: Unpaywall |
| Title | Detecting load redistribution attacks via support vector models |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2020.0030 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2020.0030 https://www.proquest.com/docview/3092323135 https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-stg.2020.0030 https://doaj.org/article/36b6cedfce5146b2919b0b54fde42a60 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2515-2947 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: ADMLS dateStart: 20201001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: IDLOA dateStart: 20180401 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: BENPR dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: AVUZU dateStart: 20180401 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2515-2947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810737 issn: 2515-2947 databaseCode: 24P dateStart: 20180101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CckhzKGnakjSp2UPpoUV0vbuSV6cQJ3EetMa0MaQnMfsyAWMbW07Iv8_sSlZrCmnpRY9ltJJmNJpvX98Q8oEb2dHKowXa0ifSO5PkisvEY_RmTucGIoHpt352OZTXt-ntBjldrYWp-CGaDrfgGfF_HRwcdJWFBEEtGvHOlcmiHGETj4fZWQLb7VttxDPhM-dy0HS0cIUtnMidiaE8TXguO83oZv7lj1rW4lOk8ceog1JrCHR7OZnB4wOMx-uYNgal3i55WaNJelKZ_xXZcJM9svMbx-BrcnzmwjgBHtPxFCydh4W4TZorCmUZVtnT-zugi-UsoHF6H3vyaUySs3hDhr3zm9PLpM6akKDa2zLJjWIOBChhtbWpzZQHziwA6oY5wzVXSnekZV4xwziKg8l0Zp01Giz34i3ZnEwnbp_QVDgnnRIMJMjMphpbk5Zph39XDhbSA8JWuipMTSkeMluMizi0LfMCFVegeoug3kBDyg7Ip-aSWcWn8ZxwNxigEQxU2LFgOh8VtWcVAh_eOOuNQ-yXaZ63c810Kr11kkOGlXwMFdeuuXjubkcrC_-SFgwRMGJggS_7ubH6vzy6iN_F3yWLHzcXvNuLXGfv_uuqQ_IilFdTDI_IZjlfuvcIlUrdiq6AW9W7aJGt7nl_8L0Vux3w7Orsa9wP-4OTn09onBLK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcYPLA9oH1q3WDzw7aHTRGu7aTOA0LroCsDqmkrEm_Z-SMIqWq7JgXxz_G3cXaTAC_dXniLosvFurPPv_Od7wj5wI3saJWjBtoyj2TuTJQqLqMcd2_mdGogFDA9HiT9E_njND5dIdf1XRifVlnbxGCo7cT4M_JtwRCKIBgR8e70b-S7Rvnoat1CA6rWCnYnlBirLnYcuqtLdOGKnYM91PdHznv7w2_9qOoyEOEw2zJKjWIOBChhtbWxTVQOnFkAxEbMGa65UrojLcsVM4wjOZhEJ9ZZo8HyXCDfR2RNCpmi87fW3R_8_NWc8nCF7pXoNOHUdPvclVFRnqFnyn1Smc--vrMhhr4BuM0h1T3Iuz4fT-HqEkaj-yA67IK9p2Sjgq_062K-PSMrbvycPLlT1PAF2d1zPjCBz3Q0AUtn_uZv01eLQln6a_304hxoMZ96-E8vQuiAhq48xUty8iACfEVWx5Oxe01oLJyTTgkGEmRiY43uq2XaoTnnYCFuEVbLKjNVDXPfSmOUhVi6TDMUXIbizbx4fd1T1iKfm0-miwIey4i7XgENoa-9HV5MZmdZtZQzgYM3zubGIdhMNE_bqWY6lrl1kkOCTD55xpUtKJb9bbPW8C317TxvkS-N1v9n6CLMi39TZr-H33m3F4qrvVk-hPdkvT88PsqODgaHb8ljz2KRyLhJVsvZ3G0hICv1u2rWU_LnoRfaDTZTSmQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVOJxQDxFoS17QBxAKxzbu_GeqpYQyqtCokEVF2tsj6tKURIlmyL-PWPvZkuEVBC31Wrs9c54PN_48Zmx58KpgdWBLNBXIVcBXV5pofJA0ZujrRwkAtPPJ-XxWH04K8622HB9Fqbhh-gm3KJnpPE6OjjOfWgSThVJMi-wzpf1OeV4Im7PkpS4b1M856rHtg-_jb-Pu7kWoSnJSfSZFM2LXFRq0C1wVq__qGcjRCUmfwo8JLUBQm-upnP4-QMmk01Ym-LS6C670wLK7LDpAffYFk7vs9u_0Qw-YAdDjEsF9JxNZuCzRTyL2910lUFdx4P22eUFZMvVPALy7DJN5mfpnpzlQzYevT19c5y3FyfkpPm-yiunOYIELb31vvClDiC4ByC4x9EJK7S2A-V50NxxQeLgSlt69M6CF0E-Yr3pbIqPWVZIRIVaclCgSl9YSig9t0gDrAAPxQ7ja10Z17KKx8stJiatbqvKkOIMqddE9UYmUr7DXnZF5g2lxnXCR9EAnWBkw04vZotz0zqXkdR4hz44JPhXWlH1K8ttoYJHJaCkSl7EilvvXF73td21ha-kJScQTDBY0s--6qz-L02XqV_8XdJ8PX0njkaJ7uzJf5V6xm58GY7Mp_cnH5-yW1Gk2XC4y3r1YoV7BJxqu9_6xS997RDZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQegAOLU_RB8gHxAG0kWN7N94TaoFQIVEh0UjltBrb44KIkijZFNFf37F3sxCECkjcrNX4_Zhv1p5vGHsqnR5aE2gGBjpkOqDLSiN1Fkh7C7Slg0Rg-v6kOB7rd2f5WetZl3xhsG5Zbj73G66I7udb3CXp7I6bfe5Dc-Y3FqguY85sWZ-TySfjay1FdvxWkRNA77Gt8cmHw08xzBxp70yWetjdb_4m34aGSkT-pHdIagOD3lxN5_D9G0wmm6g2qaXRDqvXHWpeo3ztr2rbd5e_cD3-5x7fYdstjOWHzbq7y27g9B67_RO54X328jXGCwpK88kMPF9ED-AuvhaHuo7u_fziC_Dlah7NAH6RrhB4is6zfMDGozenr46zNlxDRvM90FnpjEBQYJS33ue-MAGk8AAEMgU6aaUxdqi9CEY4IUkcXGELj95Z8DKoh6w3nU3xEeO5QtRolAANuvC5JTPWC4t0rEvwkO8ysZ6iyrVc5jGkxqRKd-q6rGhsKhqbKo5N5D8Vu-x5l2XeEHlcJ3wU570TjBzc6cNscV61W7pS1HiHPjgk0FlYWQ5KK2yug0ctoaBCnsWC2zNheV1tB-uF9UNaCYLeBL4VdfZFt9j-pukqrZs_S1YfT9_Ko1EiWdv7pzr22a2Ybt40HrBevVjhY8JmtX3S7rUr_pc5MA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+load+redistribution+attacks+via+support+vector+models&rft.jtitle=IET+smart+grid&rft.au=Chu%2C+Zhigang&rft.au=Kosut%2C+Oliver&rft.au=Sankar%2C+Lalitha&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=2515-2947&rft.eissn=2515-2947&rft.volume=3&rft.issue=5&rft.spage=551&rft.epage=560&rft_id=info:doi/10.1049%2Fiet-stg.2020.0030&rft.externalDBID=10.1049%252Fiet-stg.2020.0030&rft.externalDocID=STG2BF00164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2947&client=summon |