Detecting load redistribution attacks via support vector models

A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detect...

Full description

Saved in:
Bibliographic Details
Published inIET Smart Grid Vol. 3; no. 5; pp. 551 - 560
Main Authors Chu, Zhigang, Kosut, Oliver, Sankar, Lalitha
Format Journal Article
LanguageEnglish
Published Durham The Institution of Engineering and Technology 01.10.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN2515-2947
2515-2947
DOI10.1049/iet-stg.2020.0030

Cover

More Information
Summary:A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilising loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks are detected can significantly mitigate the attack consequences.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2515-2947
2515-2947
DOI:10.1049/iet-stg.2020.0030