Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction

Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural ne...

Full description

Saved in:
Bibliographic Details
Published inNature machine intelligence Vol. 1; no. 6; pp. 269 - 276
Main Authors Shan, Hongming, Padole, Atul, Homayounieh, Fatemeh, Kruger, Uwe, Khera, Ruhani Doda, Nitiwarangkul, Chayanin, Kalra, Mannudeep K., Wang, Ge
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2522-5839
2522-5839
DOI10.1038/s42256-019-0057-9

Cover

Abstract Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms. Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods.
AbstractList Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.
Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms. Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods.
Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.
Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms.Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods.
Author Padole, Atul
Wang, Ge
Khera, Ruhani Doda
Kruger, Uwe
Shan, Hongming
Kalra, Mannudeep K.
Nitiwarangkul, Chayanin
Homayounieh, Fatemeh
AuthorAffiliation 1 Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA 12180
3 Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 10400
2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02114
AuthorAffiliation_xml – name: 3 Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 10400
– name: 1 Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA 12180
– name: 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02114
Author_xml – sequence: 1
  givenname: Hongming
  surname: Shan
  fullname: Shan, Hongming
  organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
– sequence: 2
  givenname: Atul
  surname: Padole
  fullname: Padole, Atul
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 3
  givenname: Fatemeh
  surname: Homayounieh
  fullname: Homayounieh, Fatemeh
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 4
  givenname: Uwe
  orcidid: 0000-0001-5664-9499
  surname: Kruger
  fullname: Kruger, Uwe
  organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
– sequence: 5
  givenname: Ruhani Doda
  surname: Khera
  fullname: Khera, Ruhani Doda
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 6
  givenname: Chayanin
  surname: Nitiwarangkul
  fullname: Nitiwarangkul, Chayanin
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University
– sequence: 7
  givenname: Mannudeep K.
  orcidid: 0000-0001-9938-7476
  surname: Kalra
  fullname: Kalra, Mannudeep K.
  email: MKALRA@mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 8
  givenname: Ge
  orcidid: 0000-0002-2656-7705
  surname: Wang
  fullname: Wang, Ge
  email: wangg6@rpi.edu
  organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute
BookMark eNp9UU1rFTEUDdJia9sf4C7gxs1oksnHzEaQh1ah4KauQ17m5jV1JhmTTEvd-seb4RWrBbu6B-45J-fmvEIHIQZA6DUl7yhpu_eZMyZkQ2jfECJU079Ax0ww1oiu7Q_-wkfoLOdrQgijnAvCX6KjtmUVUn6Mfm_iNEPxxd8AniG5mCYTLODosMFTHJbRJP8LBjwAzDjAksxYR7mN6Qe2VWxSXZa44gmS9XVtxl1MvlxNGVc_PMbbZogZ8OYS-8nsACewMeSSFlt8DKfo0Jkxw9nDPEHfP3-63HxpLr6df918vGgsV6Q0nXVCWOIMVZI4aQ3YLRmkA8uIgK2wru0Is0w57lrXcynVtledoV3fGTNAe4I-7H3nZTvBYCGUeoyeUw2V7nQ0Xv-7Cf5K7-KNVrJTPSPV4O2DQYo_F8hFTz5bGEcTIC5ZMy4Fb1Xby0p984R6HZcU6nmaScYkp53oK4vuWTbFnBO4P2Eo0WvLet-yri3rtWW9atQTjfXFrP9YM_vxWSXbK3N9JewgPWb6v-geTTzAPg
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106218
crossref_primary_10_1186_s42492_024_00165_8
crossref_primary_10_1088_1361_6560_ab990e
crossref_primary_10_1109_TRPMS_2023_3309474
crossref_primary_10_1053_j_semnuclmed_2024_09_002
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1088_2632_2153_abdbff
crossref_primary_10_1016_j_media_2022_102650
crossref_primary_10_1155_2021_6453888
crossref_primary_10_3390_bioengineering12010078
crossref_primary_10_1007_s12149_021_01710_8
crossref_primary_10_1002_mp_15176
crossref_primary_10_1088_1361_6420_ab80d7
crossref_primary_10_1007_s41365_021_00874_2
crossref_primary_10_1002_mp_16027
crossref_primary_10_1002_mp_15607
crossref_primary_10_1080_13682199_2023_2176809
crossref_primary_10_1007_s10489_021_02604_y
crossref_primary_10_1109_TMI_2021_3076191
crossref_primary_10_1109_TMI_2024_3351723
crossref_primary_10_1109_TMI_2024_3351722
crossref_primary_10_1002_advs_202101333
crossref_primary_10_1148_rg_2021200196
crossref_primary_10_1016_j_cmpb_2023_107802
crossref_primary_10_1109_TMI_2021_3054167
crossref_primary_10_4103_japt_japt_13_23
crossref_primary_10_1109_TMI_2021_3101241
crossref_primary_10_1002_mp_14796
crossref_primary_10_1002_mp_15886
crossref_primary_10_1002_mp_15643
crossref_primary_10_3389_fradi_2024_1385742
crossref_primary_10_3390_diagnostics10100787
crossref_primary_10_1109_TMI_2023_3320812
crossref_primary_10_1007_s00530_023_01202_x
crossref_primary_10_1109_TCI_2020_2996751
crossref_primary_10_3390_diagnostics13111862
crossref_primary_10_3390_tomography8050219
crossref_primary_10_1007_s00259_021_05536_4
crossref_primary_10_1016_j_ultras_2024_107486
crossref_primary_10_1109_ACCESS_2020_3044708
crossref_primary_10_1148_radiol_221372
crossref_primary_10_4103_jpi_jpi_68_19
crossref_primary_10_1002_mp_17373
crossref_primary_10_1016_j_nima_2020_164530
crossref_primary_10_1002_mp_17379
crossref_primary_10_1007_s00330_022_08870_9
crossref_primary_10_1002_mp_17015
crossref_primary_10_1002_mp_14785
crossref_primary_10_1109_TRPMS_2024_3439010
crossref_primary_10_1109_ACCESS_2020_3002534
crossref_primary_10_3233_XST_210929
crossref_primary_10_1109_TMM_2024_3382509
crossref_primary_10_1109_ACCESS_2021_3108394
crossref_primary_10_2196_26601
crossref_primary_10_1016_j_artmed_2023_102555
crossref_primary_10_1088_1361_6560_ab8fc1
crossref_primary_10_3390_diagnostics11010011
crossref_primary_10_1007_s00247_021_05073_0
crossref_primary_10_1109_ACCESS_2020_2986388
crossref_primary_10_1016_j_media_2024_103420
crossref_primary_10_1088_1361_6560_ad0eb4
crossref_primary_10_1007_s12194_024_00786_x
crossref_primary_10_1186_s42492_024_00171_w
crossref_primary_10_1109_TIM_2023_3346510
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1016_j_media_2019_101628
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_1109_TRPMS_2020_3025071
crossref_primary_10_1109_ACCESS_2020_3033795
crossref_primary_10_3390_app9132615
crossref_primary_10_1002_mp_17431
crossref_primary_10_1088_1361_6560_ad31c7
crossref_primary_10_1007_s11760_023_02853_z
crossref_primary_10_1109_TIM_2022_3221772
crossref_primary_10_1155_2022_9811358
crossref_primary_10_1002_acm2_14560
crossref_primary_10_1016_j_microc_2024_112410
crossref_primary_10_1155_2021_2973108
crossref_primary_10_1016_j_neucom_2021_12_096
crossref_primary_10_1007_s41870_024_01898_8
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1117_1_JMI_10_4_044008
crossref_primary_10_1016_j_jvcir_2024_104297
crossref_primary_10_1109_TMI_2019_2963248
crossref_primary_10_3390_ijerph18063056
crossref_primary_10_1109_TIM_2022_3227549
crossref_primary_10_1186_s42492_024_00161_y
crossref_primary_10_3390_healthcare10010153
crossref_primary_10_1038_s41467_025_56505_6
crossref_primary_10_1109_TRPMS_2021_3066428
crossref_primary_10_3233_XST_200666
crossref_primary_10_1088_1361_6560_acf9da
crossref_primary_10_1007_s00247_021_05057_0
crossref_primary_10_1007_s11547_020_01277_w
crossref_primary_10_1016_j_compag_2025_109993
crossref_primary_10_1109_TIFS_2020_3047753
crossref_primary_10_1002_acm2_13121
crossref_primary_10_1109_TRPMS_2023_3314131
crossref_primary_10_3390_electronics13101906
crossref_primary_10_1016_j_mri_2022_12_008
crossref_primary_10_1109_TMI_2020_3020720
crossref_primary_10_1007_s00261_024_04216_9
crossref_primary_10_1016_j_sigpro_2020_107582
crossref_primary_10_3390_bioengineering6040111
crossref_primary_10_1109_TMI_2020_2974159
crossref_primary_10_1002_mp_15952
crossref_primary_10_1097_RCT_0000000000001405
crossref_primary_10_1109_TMI_2021_3090257
crossref_primary_10_1109_TRPMS_2022_3150322
crossref_primary_10_1016_j_cpet_2020_09_003
crossref_primary_10_1002_mp_14856
crossref_primary_10_1088_1361_6560_abfb17
crossref_primary_10_1109_TMI_2022_3231428
crossref_primary_10_1109_TIM_2021_3128703
crossref_primary_10_1007_s10915_024_02638_7
crossref_primary_10_1016_j_compmedimag_2025_102508
crossref_primary_10_1016_j_clon_2024_06_005
crossref_primary_10_1007_s13534_024_00419_7
crossref_primary_10_1016_j_cmpb_2022_106851
crossref_primary_10_1109_JSTSP_2020_2998413
crossref_primary_10_1016_j_heliyon_2024_e29249
crossref_primary_10_53941_aim_2024_100007
crossref_primary_10_3390_diagnostics10080591
crossref_primary_10_1088_1361_6560_aba939
crossref_primary_10_1002_acm2_14113
crossref_primary_10_1016_j_compmedimag_2023_102237
crossref_primary_10_1088_2632_2153_ab869f
crossref_primary_10_1088_1361_6420_ad5d0d
crossref_primary_10_1007_s11760_022_02336_7
crossref_primary_10_1016_j_compbiomed_2021_104625
crossref_primary_10_1186_s13014_021_01758_w
crossref_primary_10_1029_2019WR026052
crossref_primary_10_1109_ACCESS_2024_3407774
crossref_primary_10_1155_2021_9975762
crossref_primary_10_1186_s40658_024_00686_4
crossref_primary_10_1016_j_compbiomed_2023_107219
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1088_2632_2153_ad370e
crossref_primary_10_2991_jaims_d_210428_001
crossref_primary_10_3390_s22239250
crossref_primary_10_1088_1361_6560_ac6289
crossref_primary_10_1109_TIM_2024_3485407
crossref_primary_10_1109_TMI_2022_3219856
crossref_primary_10_1007_s40747_022_00724_7
crossref_primary_10_1109_ACCESS_2022_3198948
crossref_primary_10_1109_JBHI_2024_3454979
crossref_primary_10_1016_j_crad_2021_01_010
crossref_primary_10_1117_1_JMI_11_S1_S12804
crossref_primary_10_1016_j_compbiomed_2022_106419
crossref_primary_10_1109_ACCESS_2021_3106707
crossref_primary_10_1007_s40747_021_00405_x
crossref_primary_10_1148_ryai_210114
crossref_primary_10_1109_TMI_2021_3078067
crossref_primary_10_1016_j_xcrm_2023_101119
crossref_primary_10_1148_radiol_2020202317
crossref_primary_10_1038_s41597_021_00893_z
crossref_primary_10_1016_j_eswa_2023_122195
crossref_primary_10_1259_bjr_20220625
crossref_primary_10_1088_1361_6560_abd4ba
crossref_primary_10_3390_app12189099
crossref_primary_10_1007_s11517_022_02631_y
crossref_primary_10_1002_mp_17413
crossref_primary_10_1109_ACCESS_2025_3526619
crossref_primary_10_1088_1361_6560_ac508d
crossref_primary_10_1142_S0219519424400177
crossref_primary_10_1002_mp_16439
crossref_primary_10_1088_1361_6560_acc000
crossref_primary_10_1109_TMI_2021_3097808
crossref_primary_10_1007_s00330_022_09300_6
crossref_primary_10_1007_s00330_023_09918_0
crossref_primary_10_1016_j_compbiomed_2023_107473
crossref_primary_10_3389_fradi_2021_781868
crossref_primary_10_3389_fpsyg_2021_710982
crossref_primary_10_1109_TMI_2021_3066896
crossref_primary_10_1109_TMI_2024_3449647
crossref_primary_10_1109_ACCESS_2023_3295246
crossref_primary_10_1177_0846537120907507
crossref_primary_10_3390_brainsci14010073
crossref_primary_10_1016_j_radi_2021_07_010
crossref_primary_10_1016_j_bspc_2024_106773
crossref_primary_10_1109_TCI_2022_3197939
crossref_primary_10_3233_XST_221149
crossref_primary_10_1007_s10462_021_10034_y
crossref_primary_10_1007_s12065_022_00754_7
crossref_primary_10_1148_ryai_2020200036
crossref_primary_10_1002_mp_13918
crossref_primary_10_1186_s13634_021_00749_z
crossref_primary_10_1109_TRPMS_2020_3040882
crossref_primary_10_1002_acm2_14270
crossref_primary_10_1109_MSP_2022_3204407
crossref_primary_10_1109_TIM_2023_3329200
crossref_primary_10_1016_j_semcancer_2020_12_005
crossref_primary_10_1088_2057_1976_ad9f66
crossref_primary_10_1016_j_bspc_2024_106548
crossref_primary_10_1016_j_knosys_2022_109295
crossref_primary_10_6009_jjrt_2020_JSRT_76_8_787
crossref_primary_10_1117_1_JMI_6_4_043504
crossref_primary_10_1016_j_artmed_2023_102609
crossref_primary_10_3390_diagnostics12051285
crossref_primary_10_47102_annals_acadmed_sg_2019208
crossref_primary_10_1109_TMI_2021_3066318
crossref_primary_10_1002_mp_14319
crossref_primary_10_1117_1_JNP_14_016009
crossref_primary_10_1155_2022_2692301
crossref_primary_10_1016_j_cmpb_2023_107590
crossref_primary_10_1088_1361_6560_ac783d
crossref_primary_10_1016_j_radonc_2022_02_034
crossref_primary_10_1016_j_nima_2022_167625
crossref_primary_10_1515_bmt_2024_0362
crossref_primary_10_1109_TMI_2021_3095310
crossref_primary_10_1002_mp_16411
crossref_primary_10_1097_RTI_0000000000000486
crossref_primary_10_1016_j_ejrad_2020_109487
crossref_primary_10_1364_OE_532255
crossref_primary_10_1109_TMI_2022_3219286
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1109_TRPMS_2023_3341903
crossref_primary_10_17816_DD119870
crossref_primary_10_1016_j_eswa_2023_120001
crossref_primary_10_1016_j_media_2023_102993
crossref_primary_10_1088_1361_6560_ac556e
crossref_primary_10_1109_TMI_2023_3261822
crossref_primary_10_1088_1361_6560_ac7999
crossref_primary_10_1109_JBHI_2024_3376628
crossref_primary_10_1186_s42492_024_00175_6
crossref_primary_10_1038_s43856_024_00434_w
crossref_primary_10_3390_diagnostics10100753
crossref_primary_10_1007_s13534_024_00424_w
crossref_primary_10_1016_j_acra_2021_10_024
crossref_primary_10_1109_TRPMS_2024_3410092
crossref_primary_10_1038_s41598_022_16798_9
crossref_primary_10_1088_1361_6560_ac4122
crossref_primary_10_1109_TMI_2021_3088344
crossref_primary_10_1016_j_compbiomed_2023_107830
crossref_primary_10_1016_j_media_2021_102289
crossref_primary_10_1016_S1470_2045_20_30751_8
Cites_doi 10.1109/TMI.2017.2708987
10.1056/NEJMoa1102873
10.1056/NEJMra072149
10.1007/s00330-012-2764-z
10.1148/radiol.2015132766
10.1109/TMI.2018.2827462
10.1109/TMI.2017.2715284
10.1038/nature25988
10.1001/archinternmed.2009.440
10.1016/j.neucom.2018.01.015
10.1109/TMI.2018.2833635
10.1109/TMI.2018.2832217
10.1109/TMI.2006.882141
10.1364/BOE.8.000679
10.1001/archinternmed.2009.427
10.1118/1.3232004
10.1007/s10278-018-0056-0
10.1002/mp.13415
10.1109/TMI.2018.2832007
10.1109/ACCESS.2018.2858196
10.1109/ACCESS.2016.2624938
10.1109/TMI.2018.2823756
10.1007/978-3-319-24574-4_28
10.1117/12.2293420
10.1109/CVPR.2017.298
10.1117/12.2512183
10.1109/EMBC.2019.8857940
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s42256-019-0057-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-5839
EndPage 276
ExternalDocumentID PMC7687920
10_1038_s42256_019_0057_9
GroupedDBID 0R~
88I
AAEEF
AARCD
AAYZH
ABJNI
ABUWG
ACBWK
ADBBV
AFKRA
AFSHS
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
K7-
M2P
NNMJJ
ODYON
RNT
SIXXV
SNYQT
SOJ
TBHMF
AAYXX
AFANA
ATHPR
CITATION
O9-
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7SC
7XB
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
AGSTI
5PM
ID FETCH-LOGICAL-c470t-8cf55c0fa1760f6caecb0d6fec205eb5cf3802c27f4f3f94667b978a1898aade3
IEDL.DBID BENPR
ISSN 2522-5839
IngestDate Tue Sep 30 16:28:42 EDT 2025
Thu Oct 02 09:42:04 EDT 2025
Sat Aug 23 13:10:35 EDT 2025
Wed Oct 01 01:51:45 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-8cf55c0fa1760f6caecb0d6fec205eb5cf3802c27f4f3f94667b978a1898aade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G.W. initiated the project. G.W., H.S. and M.K.K. designed the experiments. H.S. and G.W. performed machine learning research. A.P. and F.H. collected CT data and conducted the reader studies. M.K.K, C.N., and R.D.K. were the readers. H.S., G.W., U.K. and M.K.K. analyzed the data. H.S. and G.W. wrote the paper, and M.K.K. and U.K. edited the paper.
Author contributions
ORCID 0000-0001-5664-9499
0000-0001-9938-7476
0000-0002-2656-7705
PMID 33244514
PQID 2622641859
PQPubID 5342773
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687920
proquest_miscellaneous_2465437396
proquest_journals_2622641859
crossref_primary_10_1038_s42256_019_0057_9
crossref_citationtrail_10_1038_s42256_019_0057_9
springer_journals_10_1038_s42256_019_0057_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
PublicationTitle Nature machine intelligence
PublicationTitleAbbrev Nat Mach Intell
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hu (CR24) 2019; 46
Willemink (CR12) 2013; 23
(CR7) 2011; 2011
Shan (CR19) 2018; 37
Wang, Li, Lu, Liang (CR10) 2006; 25
CR35
CR34
CR33
Geyer (CR11) 2015; 276
CR32
CR31
CR30
de González (CR5) 2009; 169
Chen (CR15) 2017; 36
You (CR23) 2018; 6
Wolterink, Leiner, Viergever, Išgum (CR16) 2017; 36
Kang, Chang, Yoo, Ye (CR18) 2018; 37
Manduca (CR9) 2009; 36
Wang, Lu, Li, Liang (CR8) 2005; 5747
Yang (CR17) 2018; 37
CR29
Liu, Zhang (CR22) 2018; 284
CR28
Smith-Bindman (CR6) 2009; 169
CR27
CR25
Zhu, Liu, Cauley, Rosen, Rosen (CR3) 2018; 555
Wang, Ye, Mueller, Fessler (CR2) 2018; 37
CR21
CR20
Wang (CR1) 2016; 4
Zheng, Ravishankar, Long, Fessler (CR13) 2018; 37
Yi, Babyn (CR26) 2018; 31
Brenner, Hall (CR4) 2007; 357
Chen (CR14) 2017; 8
AB de González (57_CR5) 2009; 169
National Lung Screening Trial Research Team (57_CR7) 2011; 2011
DJ Brenner (57_CR4) 2007; 357
X Zheng (57_CR13) 2018; 37
E Kang (57_CR18) 2018; 37
JM Wolterink (57_CR16) 2017; 36
57_CR35
57_CR34
57_CR33
R Smith-Bindman (57_CR6) 2009; 169
57_CR32
57_CR31
57_CR30
LL Geyer (57_CR11) 2015; 276
H Shan (57_CR19) 2018; 37
X Yi (57_CR26) 2018; 31
Y Liu (57_CR22) 2018; 284
G Wang (57_CR2) 2018; 37
B Zhu (57_CR3) 2018; 555
J Wang (57_CR10) 2006; 25
57_CR29
57_CR28
C You (57_CR23) 2018; 6
57_CR27
J Wang (57_CR8) 2005; 5747
MJ Willemink (57_CR12) 2013; 23
57_CR25
G Wang (57_CR1) 2016; 4
Z Hu (57_CR24) 2019; 46
Q Yang (57_CR17) 2018; 37
57_CR21
57_CR20
H Chen (57_CR15) 2017; 36
A Manduca (57_CR9) 2009; 36
H Chen (57_CR14) 2017; 8
References_xml – volume: 36
  start-page: 2536
  year: 2017
  end-page: 2545
  ident: CR16
  article-title: Generative adversarial networks for noise reduction in low-dose CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2708987
– volume: 2011
  start-page: 395
  year: 2011
  end-page: 409
  ident: CR7
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  ident: CR4
  article-title: Computed tomography—an increasing source of radiation exposure
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra072149
– volume: 23
  start-page: 1632
  year: 2013
  end-page: 1642
  ident: CR12
  article-title: Iterative reconstruction techniques for computed tomography. Part 2: Initial results in dose reduction and image quality
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-012-2764-z
– volume: 5747
  start-page: 2059
  year: 2005
  ident: CR8
  article-title: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters
  publication-title: Proc. SPIE
– ident: CR30
– volume: 276
  start-page: 339
  year: 2015
  end-page: 357
  ident: CR11
  article-title: State of the art: iterative CT reconstruction techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 37
  start-page: 1348
  year: 2018
  end-page: 1357
  ident: CR17
  article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: CR33
– ident: CR35
– volume: 36
  start-page: 2524
  year: 2017
  end-page: 2535
  ident: CR15
  article-title: Low-dose CT with a residual encoder–decoder convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2715284
– ident: CR29
– volume: 555
  start-page: 487
  year: 2018
  end-page: 492
  ident: CR3
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 169
  start-page: 2071
  year: 2009
  end-page: 2077
  ident: CR5
  article-title: Projected cancer risks from computed tomographic scans performed in the United States in 2007
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2009.440
– volume: 284
  start-page: 80
  year: 2018
  end-page: 89
  ident: CR22
  article-title: Low-dose CT restoration via stacked sparse denoising autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.015
– volume: 37
  start-page: 1289
  year: 2018
  end-page: 1296
  ident: CR2
  article-title: Image reconstruction is a new frontier of machine learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2833635
– ident: CR25
– ident: CR27
– ident: CR21
– volume: 37
  start-page: 1522
  year: 2018
  end-page: 1534
  ident: CR19
  article-title: 3D convolutional encoder–decoder network for low-dose CT via transfer learning from a 2D trained network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2832217
– volume: 25
  start-page: 1272
  year: 2006
  end-page: 1283
  ident: CR10
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– volume: 8
  start-page: 679
  year: 2017
  end-page: 694
  ident: CR14
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000679
– volume: 169
  start-page: 2078
  year: 2009
  end-page: 2086
  ident: CR6
  article-title: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2009.427
– volume: 36
  start-page: 4911
  year: 2009
  end-page: 4919
  ident: CR9
  article-title: Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT
  publication-title: Med. Phys.
  doi: 10.1118/1.3232004
– ident: CR31
– volume: 31
  start-page: 655
  year: 2018
  end-page: 669
  ident: CR26
  article-title: Sharpness-aware low-dose CT denoising using conditional generative adversarial network
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0056-0
– volume: 46
  start-page: 1686
  year: 2019
  end-page: 1696
  ident: CR24
  article-title: Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13415
– volume: 37
  start-page: 1498
  year: 2018
  end-page: 1510
  ident: CR13
  article-title: PWLS-ULTRA: an efficient clustering and learning-based approach for low-dose 3D CT image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2832007
– volume: 6
  start-page: 41839
  year: 2018
  end-page: 41855
  ident: CR23
  article-title: Structurally-sensitive multi-scale deep neural network for low-dose CT denoising
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858196
– ident: CR32
– ident: CR34
– volume: 4
  start-page: 8914
  year: 2016
  end-page: 8924
  ident: CR1
  article-title: A perspective on deep imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2624938
– volume: 37
  start-page: 1358
  year: 2018
  end-page: 1369
  ident: CR18
  article-title: Deep convolutional framelet denosing for low-dose CT via wavelet residual network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2823756
– ident: CR28
– ident: CR20
– volume: 555
  start-page: 487
  year: 2018
  ident: 57_CR3
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 8
  start-page: 679
  year: 2017
  ident: 57_CR14
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000679
– ident: 57_CR27
  doi: 10.1007/978-3-319-24574-4_28
– volume: 6
  start-page: 41839
  year: 2018
  ident: 57_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858196
– volume: 37
  start-page: 1358
  year: 2018
  ident: 57_CR18
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2823756
– volume: 37
  start-page: 1522
  year: 2018
  ident: 57_CR19
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2832217
– volume: 357
  start-page: 2277
  year: 2007
  ident: 57_CR4
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMra072149
– volume: 25
  start-page: 1272
  year: 2006
  ident: 57_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– volume: 37
  start-page: 1348
  year: 2018
  ident: 57_CR17
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– ident: 57_CR35
– volume: 36
  start-page: 2524
  year: 2017
  ident: 57_CR15
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2715284
– ident: 57_CR20
  doi: 10.1117/12.2293420
– ident: 57_CR29
  doi: 10.1109/CVPR.2017.298
– ident: 57_CR31
– ident: 57_CR33
– volume: 5747
  start-page: 2059
  year: 2005
  ident: 57_CR8
  publication-title: Proc. SPIE
– ident: 57_CR21
  doi: 10.1117/12.2512183
– volume: 37
  start-page: 1498
  year: 2018
  ident: 57_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2832007
– ident: 57_CR28
– volume: 31
  start-page: 655
  year: 2018
  ident: 57_CR26
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0056-0
– volume: 169
  start-page: 2078
  year: 2009
  ident: 57_CR6
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2009.427
– volume: 36
  start-page: 4911
  year: 2009
  ident: 57_CR9
  publication-title: Med. Phys.
  doi: 10.1118/1.3232004
– volume: 46
  start-page: 1686
  year: 2019
  ident: 57_CR24
  publication-title: Med. Phys.
  doi: 10.1002/mp.13415
– volume: 169
  start-page: 2071
  year: 2009
  ident: 57_CR5
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2009.440
– volume: 284
  start-page: 80
  year: 2018
  ident: 57_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.015
– volume: 4
  start-page: 8914
  year: 2016
  ident: 57_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2624938
– ident: 57_CR25
  doi: 10.1109/EMBC.2019.8857940
– ident: 57_CR32
– volume: 276
  start-page: 339
  year: 2015
  ident: 57_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 23
  start-page: 1632
  year: 2013
  ident: 57_CR12
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-012-2764-z
– volume: 2011
  start-page: 395
  year: 2011
  ident: 57_CR7
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– ident: 57_CR34
– ident: 57_CR30
– volume: 37
  start-page: 1289
  year: 2018
  ident: 57_CR2
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2833635
– volume: 36
  start-page: 2536
  year: 2017
  ident: 57_CR16
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2708987
SSID ssj0002144504
Score 2.5664139
Snippet Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can...
Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms 631/114/1305
692/700/1421
692/700/1421/1846/2771
Algorithms
Artificial neural networks
Cloning
Computed tomography
Deep learning
Engineering
Image quality
Image reconstruction
Iterative methods
Machine learning
Medical imaging
Modular design
Neural networks
Noise
Noise reduction
Performance evaluation
Process mapping
Radiation
Radiation dosage
Scanners
Workflow
Title Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction
URI https://link.springer.com/article/10.1038/s42256-019-0057-9
https://www.proquest.com/docview/2622641859
https://www.proquest.com/docview/2465437396
https://pubmed.ncbi.nlm.nih.gov/PMC7687920
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2522-5839
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002144504
  issn: 2522-5839
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GUvY6Mdy9YVFfa0IapYtmw9lLGFpmWwUEYLfTOyfqyBxM5IxmCv_cd3p9gOKbRvBsmS8HeS7nx33wF8FE5pqWTgidUpGihuxI3SFTfG-Ew7q7yg3OEfU3V1m36_y-72YNrlwlBYZXcmxoPaNZb-kZ8lilI-8XbRX5a_OVWNIu9qV0LDtKUV3HmkGNuHg4SYsQZw8O1iev2z_-tCBGGZSDv3pizOVilKNBnVmlNiJte7F9RW63wcM_nIcRrvo8kreNkqkuzrBvnXsOfrQ3gYRzU4xgOx5TYngDWBGbZoHAWdzv55x5z3S0ZkljhGvQkFZ108Ols39LygYkzYbOa_8EOs7xcrhuOxefOXu2bl2fiGzRZ4HLFoVPdEtEdwO7m4GV_xtswCt2ku1rywIcusCGaUKxGUNd5WCGHwNhGZrzIbZCESm-QhDTIQH31eoe1pRoUujHFevoFB3dT-LTDrKNpDF8FVPq1QuXHSosUYUK1zI-XUEET3bUvbcpBTKYx5GX3hsig3cJQIR0lwlHoIn_pXlhsCjuc6H3eAle1eXJVbyRnCad-Mu4hcI6b2zR_sQ7RyMpcal5jvAN1PSjzcuy317D7ycaPFlutEDOFzJxLbyZ9c6rvnl_oeXiRRJkk0j2GAGPoPqP6sqxPYLyaXJ61k_wdd8Qmx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gAvaAgQHWMYCV5A1lw7ceKHaYKyqWNbhVAn7S04_sMqtUlRiqbxyvfis3GXJqk6ib3tLZIT2_Hd2Xe-u98R8pY7paWSgQmrIzBQXJ8ZpXNmjPGxdlZ5jrnD5yM1vIi-XMaXG-RvmwuDYZXtnlhv1K60eEe-LxSmfMLpog_nPxlWjULvaltCwzSlFdxBDTHWJHac-ptrMOGqg5PPQO93QhwfjQdD1lQZYDZK-IKlNsSx5cH0E8WDssbbHP4geCt47PPYBplyYUUSoiADwrEnOZhepp_q1BjnJfT7gGxFMtJg_G19Ohp9_dbd8iAgWcyj1p0q0_0qAglCI14zTARlev1AXGm5t2M0bzlq6_PveJs8bhRX-nHJaU_Ihi-ekj-DWu2u44_ofJWDQMtADZ2VDoNcJ7-9o877OUXwTOijWIae0zb-nS5KfJ5h8SdoNtMfsPCLq1lFoT86La-ZKytPB2M6mcH2R2sjvgO-fUYu7mXBn5PNoiz8C0Ktw-gSnQaX-ygHZcpJCxZqADXS9ZVTPcLbtc1sg3mOpTemWe17l2m2JEcG5MiQHJnukffdJ_Ml4MddL--2BMsa2a-yFaf2yJuuGaQWXTGm8OUveAdh7GQiNUwxWSN0Nyjifq-3FJOrGv8bLMREC94jH1qWWA3-36nu3D3V1-ThcHx-lp2djE5fkkei5k9k012yCfT0r0D1WuR7DX9T8v2-ReofmoBHgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1gvgiioqnVSPoixIul-xmNw8icvVsrRYfWujbms2HPbjbPdmToq_-V_51zmQ_jivYt74tJJuEzEwyk5n5DSEvuVNaKhmYsDoBA8VNmFG6ZMYYn2pnleeYO_zlWB2cJp_O0rMd8rfPhcGwyv5MjAe1qy2-kY-FwpRPuF30OHRhEV_3Z-9WPxhWkEJPa19Oo2WRI__rAsy35u3hPtD6lRCzDyfTA9ZVGGA2yfia5TakqeXBTDLFg7LG2xJWH7wVPPVlaoPMubAiC0mQAaHYsxLMLjPJdW6M8xLGvUFuZojijlnqs4_D-w5CkaU86R2pMh83CcgOmu-aYQoo09tX4Ua_vRydeclFG2--2V1yp1NZ6fuWx-6RHV_dJ3-mUeGOkUd0tck-oHWghi5rh-Gt89_eUef9iiJsJoxRtUHntI98p-sav5dY9gmazeI7bPP6fNlQGI8u6gvm6sbT6QmdL-Hgo9F8HyBvH5DTa9nuh2S3qiv_iFDrMK5E58GVPilBjXLSgm0aQIF0E-XUiPB-bwvboZ1j0Y1FEb3uMi9achRAjgLJUegReT38smqhPq7qvNcTrOikvik2PDoiL4ZmkFd0wpjK1z-hDwLYyUxqWGK2RehhUkT83m6p5ucR-Rtsw0wLPiJvepbYTP7fpT6-eqnPyS0QpOLz4fHRE3JbRPZELt0ju0BO_xR0rnX5LDI3Jd-uW5r-Ab7qRR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+performance+of+a+modularized+deep+neural+network+compared+to+commercial+algorithms+for+low-dose+CT+image+reconstruction&rft.jtitle=Nature+machine+intelligence&rft.au=Shan%2C+Hongming&rft.au=Padole%2C+Atul&rft.au=Homayounieh%2C+Fatemeh&rft.au=Kruger%2C+Uwe&rft.date=2019-06-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=1&rft.issue=6&rft.spage=269&rft.epage=276&rft_id=info:doi/10.1038%2Fs42256-019-0057-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42256_019_0057_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon