Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction
Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural ne...
Saved in:
| Published in | Nature machine intelligence Vol. 1; no. 6; pp. 269 - 276 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.06.2019
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2522-5839 2522-5839 |
| DOI | 10.1038/s42256-019-0057-9 |
Cover
| Abstract | Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms.
Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods. |
|---|---|
| AbstractList | Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms. Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms. Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods. Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms. Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here, we design a modularized neural network for LDCT and compare it with commercial iterative reconstruction methods from three leading CT vendors. Although popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists in the loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performs either favourably or comparably in terms of noise suppression and structural fidelity, and is much faster than commercial iterative reconstruction algorithms.Reducing the radiation dose for medical CT scans can provide a less invasive imaging method, but requires a method for reconstructing an image up to the image quality from a full-dose scan. In this article, Wang and colleagues show that the deep learning approach, combined with the feedback from radiologists, produces higher quality reconstructions than or similar to that using the current commercial methods. |
| Author | Padole, Atul Wang, Ge Khera, Ruhani Doda Kruger, Uwe Shan, Hongming Kalra, Mannudeep K. Nitiwarangkul, Chayanin Homayounieh, Fatemeh |
| AuthorAffiliation | 1 Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA 12180 3 Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 10400 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02114 |
| AuthorAffiliation_xml | – name: 3 Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 10400 – name: 1 Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA 12180 – name: 2 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02114 |
| Author_xml | – sequence: 1 givenname: Hongming surname: Shan fullname: Shan, Hongming organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute – sequence: 2 givenname: Atul surname: Padole fullname: Padole, Atul organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 3 givenname: Fatemeh surname: Homayounieh fullname: Homayounieh, Fatemeh organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 4 givenname: Uwe orcidid: 0000-0001-5664-9499 surname: Kruger fullname: Kruger, Uwe organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute – sequence: 5 givenname: Ruhani Doda surname: Khera fullname: Khera, Ruhani Doda organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 6 givenname: Chayanin surname: Nitiwarangkul fullname: Nitiwarangkul, Chayanin organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University – sequence: 7 givenname: Mannudeep K. orcidid: 0000-0001-9938-7476 surname: Kalra fullname: Kalra, Mannudeep K. email: MKALRA@mgh.harvard.edu organization: Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 8 givenname: Ge orcidid: 0000-0002-2656-7705 surname: Wang fullname: Wang, Ge email: wangg6@rpi.edu organization: Biomedical Imaging Center, Department of Biomedical Engineering, School of Engineering / Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute |
| BookMark | eNp9UU1rFTEUDdJia9sf4C7gxs1oksnHzEaQh1ah4KauQ17m5jV1JhmTTEvd-seb4RWrBbu6B-45J-fmvEIHIQZA6DUl7yhpu_eZMyZkQ2jfECJU079Ax0ww1oiu7Q_-wkfoLOdrQgijnAvCX6KjtmUVUn6Mfm_iNEPxxd8AniG5mCYTLODosMFTHJbRJP8LBjwAzDjAksxYR7mN6Qe2VWxSXZa44gmS9XVtxl1MvlxNGVc_PMbbZogZ8OYS-8nsACewMeSSFlt8DKfo0Jkxw9nDPEHfP3-63HxpLr6df918vGgsV6Q0nXVCWOIMVZI4aQ3YLRmkA8uIgK2wru0Is0w57lrXcynVtledoV3fGTNAe4I-7H3nZTvBYCGUeoyeUw2V7nQ0Xv-7Cf5K7-KNVrJTPSPV4O2DQYo_F8hFTz5bGEcTIC5ZMy4Fb1Xby0p984R6HZcU6nmaScYkp53oK4vuWTbFnBO4P2Eo0WvLet-yri3rtWW9atQTjfXFrP9YM_vxWSXbK3N9JewgPWb6v-geTTzAPg |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106218 crossref_primary_10_1186_s42492_024_00165_8 crossref_primary_10_1088_1361_6560_ab990e crossref_primary_10_1109_TRPMS_2023_3309474 crossref_primary_10_1053_j_semnuclmed_2024_09_002 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1088_2632_2153_abdbff crossref_primary_10_1016_j_media_2022_102650 crossref_primary_10_1155_2021_6453888 crossref_primary_10_3390_bioengineering12010078 crossref_primary_10_1007_s12149_021_01710_8 crossref_primary_10_1002_mp_15176 crossref_primary_10_1088_1361_6420_ab80d7 crossref_primary_10_1007_s41365_021_00874_2 crossref_primary_10_1002_mp_16027 crossref_primary_10_1002_mp_15607 crossref_primary_10_1080_13682199_2023_2176809 crossref_primary_10_1007_s10489_021_02604_y crossref_primary_10_1109_TMI_2021_3076191 crossref_primary_10_1109_TMI_2024_3351723 crossref_primary_10_1109_TMI_2024_3351722 crossref_primary_10_1002_advs_202101333 crossref_primary_10_1148_rg_2021200196 crossref_primary_10_1016_j_cmpb_2023_107802 crossref_primary_10_1109_TMI_2021_3054167 crossref_primary_10_4103_japt_japt_13_23 crossref_primary_10_1109_TMI_2021_3101241 crossref_primary_10_1002_mp_14796 crossref_primary_10_1002_mp_15886 crossref_primary_10_1002_mp_15643 crossref_primary_10_3389_fradi_2024_1385742 crossref_primary_10_3390_diagnostics10100787 crossref_primary_10_1109_TMI_2023_3320812 crossref_primary_10_1007_s00530_023_01202_x crossref_primary_10_1109_TCI_2020_2996751 crossref_primary_10_3390_diagnostics13111862 crossref_primary_10_3390_tomography8050219 crossref_primary_10_1007_s00259_021_05536_4 crossref_primary_10_1016_j_ultras_2024_107486 crossref_primary_10_1109_ACCESS_2020_3044708 crossref_primary_10_1148_radiol_221372 crossref_primary_10_4103_jpi_jpi_68_19 crossref_primary_10_1002_mp_17373 crossref_primary_10_1016_j_nima_2020_164530 crossref_primary_10_1002_mp_17379 crossref_primary_10_1007_s00330_022_08870_9 crossref_primary_10_1002_mp_17015 crossref_primary_10_1002_mp_14785 crossref_primary_10_1109_TRPMS_2024_3439010 crossref_primary_10_1109_ACCESS_2020_3002534 crossref_primary_10_3233_XST_210929 crossref_primary_10_1109_TMM_2024_3382509 crossref_primary_10_1109_ACCESS_2021_3108394 crossref_primary_10_2196_26601 crossref_primary_10_1016_j_artmed_2023_102555 crossref_primary_10_1088_1361_6560_ab8fc1 crossref_primary_10_3390_diagnostics11010011 crossref_primary_10_1007_s00247_021_05073_0 crossref_primary_10_1109_ACCESS_2020_2986388 crossref_primary_10_1016_j_media_2024_103420 crossref_primary_10_1088_1361_6560_ad0eb4 crossref_primary_10_1007_s12194_024_00786_x crossref_primary_10_1186_s42492_024_00171_w crossref_primary_10_1109_TIM_2023_3346510 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1016_j_media_2019_101628 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_1109_TRPMS_2020_3025071 crossref_primary_10_1109_ACCESS_2020_3033795 crossref_primary_10_3390_app9132615 crossref_primary_10_1002_mp_17431 crossref_primary_10_1088_1361_6560_ad31c7 crossref_primary_10_1007_s11760_023_02853_z crossref_primary_10_1109_TIM_2022_3221772 crossref_primary_10_1155_2022_9811358 crossref_primary_10_1002_acm2_14560 crossref_primary_10_1016_j_microc_2024_112410 crossref_primary_10_1155_2021_2973108 crossref_primary_10_1016_j_neucom_2021_12_096 crossref_primary_10_1007_s41870_024_01898_8 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1117_1_JMI_10_4_044008 crossref_primary_10_1016_j_jvcir_2024_104297 crossref_primary_10_1109_TMI_2019_2963248 crossref_primary_10_3390_ijerph18063056 crossref_primary_10_1109_TIM_2022_3227549 crossref_primary_10_1186_s42492_024_00161_y crossref_primary_10_3390_healthcare10010153 crossref_primary_10_1038_s41467_025_56505_6 crossref_primary_10_1109_TRPMS_2021_3066428 crossref_primary_10_3233_XST_200666 crossref_primary_10_1088_1361_6560_acf9da crossref_primary_10_1007_s00247_021_05057_0 crossref_primary_10_1007_s11547_020_01277_w crossref_primary_10_1016_j_compag_2025_109993 crossref_primary_10_1109_TIFS_2020_3047753 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1109_TRPMS_2023_3314131 crossref_primary_10_3390_electronics13101906 crossref_primary_10_1016_j_mri_2022_12_008 crossref_primary_10_1109_TMI_2020_3020720 crossref_primary_10_1007_s00261_024_04216_9 crossref_primary_10_1016_j_sigpro_2020_107582 crossref_primary_10_3390_bioengineering6040111 crossref_primary_10_1109_TMI_2020_2974159 crossref_primary_10_1002_mp_15952 crossref_primary_10_1097_RCT_0000000000001405 crossref_primary_10_1109_TMI_2021_3090257 crossref_primary_10_1109_TRPMS_2022_3150322 crossref_primary_10_1016_j_cpet_2020_09_003 crossref_primary_10_1002_mp_14856 crossref_primary_10_1088_1361_6560_abfb17 crossref_primary_10_1109_TMI_2022_3231428 crossref_primary_10_1109_TIM_2021_3128703 crossref_primary_10_1007_s10915_024_02638_7 crossref_primary_10_1016_j_compmedimag_2025_102508 crossref_primary_10_1016_j_clon_2024_06_005 crossref_primary_10_1007_s13534_024_00419_7 crossref_primary_10_1016_j_cmpb_2022_106851 crossref_primary_10_1109_JSTSP_2020_2998413 crossref_primary_10_1016_j_heliyon_2024_e29249 crossref_primary_10_53941_aim_2024_100007 crossref_primary_10_3390_diagnostics10080591 crossref_primary_10_1088_1361_6560_aba939 crossref_primary_10_1002_acm2_14113 crossref_primary_10_1016_j_compmedimag_2023_102237 crossref_primary_10_1088_2632_2153_ab869f crossref_primary_10_1088_1361_6420_ad5d0d crossref_primary_10_1007_s11760_022_02336_7 crossref_primary_10_1016_j_compbiomed_2021_104625 crossref_primary_10_1186_s13014_021_01758_w crossref_primary_10_1029_2019WR026052 crossref_primary_10_1109_ACCESS_2024_3407774 crossref_primary_10_1155_2021_9975762 crossref_primary_10_1186_s40658_024_00686_4 crossref_primary_10_1016_j_compbiomed_2023_107219 crossref_primary_10_1109_JBHI_2022_3225697 crossref_primary_10_1088_2632_2153_ad370e crossref_primary_10_2991_jaims_d_210428_001 crossref_primary_10_3390_s22239250 crossref_primary_10_1088_1361_6560_ac6289 crossref_primary_10_1109_TIM_2024_3485407 crossref_primary_10_1109_TMI_2022_3219856 crossref_primary_10_1007_s40747_022_00724_7 crossref_primary_10_1109_ACCESS_2022_3198948 crossref_primary_10_1109_JBHI_2024_3454979 crossref_primary_10_1016_j_crad_2021_01_010 crossref_primary_10_1117_1_JMI_11_S1_S12804 crossref_primary_10_1016_j_compbiomed_2022_106419 crossref_primary_10_1109_ACCESS_2021_3106707 crossref_primary_10_1007_s40747_021_00405_x crossref_primary_10_1148_ryai_210114 crossref_primary_10_1109_TMI_2021_3078067 crossref_primary_10_1016_j_xcrm_2023_101119 crossref_primary_10_1148_radiol_2020202317 crossref_primary_10_1038_s41597_021_00893_z crossref_primary_10_1016_j_eswa_2023_122195 crossref_primary_10_1259_bjr_20220625 crossref_primary_10_1088_1361_6560_abd4ba crossref_primary_10_3390_app12189099 crossref_primary_10_1007_s11517_022_02631_y crossref_primary_10_1002_mp_17413 crossref_primary_10_1109_ACCESS_2025_3526619 crossref_primary_10_1088_1361_6560_ac508d crossref_primary_10_1142_S0219519424400177 crossref_primary_10_1002_mp_16439 crossref_primary_10_1088_1361_6560_acc000 crossref_primary_10_1109_TMI_2021_3097808 crossref_primary_10_1007_s00330_022_09300_6 crossref_primary_10_1007_s00330_023_09918_0 crossref_primary_10_1016_j_compbiomed_2023_107473 crossref_primary_10_3389_fradi_2021_781868 crossref_primary_10_3389_fpsyg_2021_710982 crossref_primary_10_1109_TMI_2021_3066896 crossref_primary_10_1109_TMI_2024_3449647 crossref_primary_10_1109_ACCESS_2023_3295246 crossref_primary_10_1177_0846537120907507 crossref_primary_10_3390_brainsci14010073 crossref_primary_10_1016_j_radi_2021_07_010 crossref_primary_10_1016_j_bspc_2024_106773 crossref_primary_10_1109_TCI_2022_3197939 crossref_primary_10_3233_XST_221149 crossref_primary_10_1007_s10462_021_10034_y crossref_primary_10_1007_s12065_022_00754_7 crossref_primary_10_1148_ryai_2020200036 crossref_primary_10_1002_mp_13918 crossref_primary_10_1186_s13634_021_00749_z crossref_primary_10_1109_TRPMS_2020_3040882 crossref_primary_10_1002_acm2_14270 crossref_primary_10_1109_MSP_2022_3204407 crossref_primary_10_1109_TIM_2023_3329200 crossref_primary_10_1016_j_semcancer_2020_12_005 crossref_primary_10_1088_2057_1976_ad9f66 crossref_primary_10_1016_j_bspc_2024_106548 crossref_primary_10_1016_j_knosys_2022_109295 crossref_primary_10_6009_jjrt_2020_JSRT_76_8_787 crossref_primary_10_1117_1_JMI_6_4_043504 crossref_primary_10_1016_j_artmed_2023_102609 crossref_primary_10_3390_diagnostics12051285 crossref_primary_10_47102_annals_acadmed_sg_2019208 crossref_primary_10_1109_TMI_2021_3066318 crossref_primary_10_1002_mp_14319 crossref_primary_10_1117_1_JNP_14_016009 crossref_primary_10_1155_2022_2692301 crossref_primary_10_1016_j_cmpb_2023_107590 crossref_primary_10_1088_1361_6560_ac783d crossref_primary_10_1016_j_radonc_2022_02_034 crossref_primary_10_1016_j_nima_2022_167625 crossref_primary_10_1515_bmt_2024_0362 crossref_primary_10_1109_TMI_2021_3095310 crossref_primary_10_1002_mp_16411 crossref_primary_10_1097_RTI_0000000000000486 crossref_primary_10_1016_j_ejrad_2020_109487 crossref_primary_10_1364_OE_532255 crossref_primary_10_1109_TMI_2022_3219286 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1109_TRPMS_2023_3341903 crossref_primary_10_17816_DD119870 crossref_primary_10_1016_j_eswa_2023_120001 crossref_primary_10_1016_j_media_2023_102993 crossref_primary_10_1088_1361_6560_ac556e crossref_primary_10_1109_TMI_2023_3261822 crossref_primary_10_1088_1361_6560_ac7999 crossref_primary_10_1109_JBHI_2024_3376628 crossref_primary_10_1186_s42492_024_00175_6 crossref_primary_10_1038_s43856_024_00434_w crossref_primary_10_3390_diagnostics10100753 crossref_primary_10_1007_s13534_024_00424_w crossref_primary_10_1016_j_acra_2021_10_024 crossref_primary_10_1109_TRPMS_2024_3410092 crossref_primary_10_1038_s41598_022_16798_9 crossref_primary_10_1088_1361_6560_ac4122 crossref_primary_10_1109_TMI_2021_3088344 crossref_primary_10_1016_j_compbiomed_2023_107830 crossref_primary_10_1016_j_media_2021_102289 crossref_primary_10_1016_S1470_2045_20_30751_8 |
| Cites_doi | 10.1109/TMI.2017.2708987 10.1056/NEJMoa1102873 10.1056/NEJMra072149 10.1007/s00330-012-2764-z 10.1148/radiol.2015132766 10.1109/TMI.2018.2827462 10.1109/TMI.2017.2715284 10.1038/nature25988 10.1001/archinternmed.2009.440 10.1016/j.neucom.2018.01.015 10.1109/TMI.2018.2833635 10.1109/TMI.2018.2832217 10.1109/TMI.2006.882141 10.1364/BOE.8.000679 10.1001/archinternmed.2009.427 10.1118/1.3232004 10.1007/s10278-018-0056-0 10.1002/mp.13415 10.1109/TMI.2018.2832007 10.1109/ACCESS.2018.2858196 10.1109/ACCESS.2016.2624938 10.1109/TMI.2018.2823756 10.1007/978-3-319-24574-4_28 10.1117/12.2293420 10.1109/CVPR.2017.298 10.1117/12.2512183 10.1109/EMBC.2019.8857940 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 The Author(s), under exclusive licence to Springer Nature Limited 2019. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1038/s42256-019-0057-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2522-5839 |
| EndPage | 276 |
| ExternalDocumentID | PMC7687920 10_1038_s42256_019_0057_9 |
| GroupedDBID | 0R~ 88I AAEEF AARCD AAYZH ABJNI ABUWG ACBWK ADBBV AFKRA AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO EBS EJD FSGXE GNUQQ HCIFZ K7- M2P NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF AAYXX AFANA ATHPR CITATION O9- PHGZM PHGZT PQGLB PUEGO 3V. 7SC 7XB 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 AGSTI 5PM |
| ID | FETCH-LOGICAL-c470t-8cf55c0fa1760f6caecb0d6fec205eb5cf3802c27f4f3f94667b978a1898aade3 |
| IEDL.DBID | BENPR |
| ISSN | 2522-5839 |
| IngestDate | Tue Sep 30 16:28:42 EDT 2025 Thu Oct 02 09:42:04 EDT 2025 Sat Aug 23 13:10:35 EDT 2025 Wed Oct 01 01:51:45 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-8cf55c0fa1760f6caecb0d6fec205eb5cf3802c27f4f3f94667b978a1898aade3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G.W. initiated the project. G.W., H.S. and M.K.K. designed the experiments. H.S. and G.W. performed machine learning research. A.P. and F.H. collected CT data and conducted the reader studies. M.K.K, C.N., and R.D.K. were the readers. H.S., G.W., U.K. and M.K.K. analyzed the data. H.S. and G.W. wrote the paper, and M.K.K. and U.K. edited the paper. Author contributions |
| ORCID | 0000-0001-5664-9499 0000-0001-9938-7476 0000-0002-2656-7705 |
| PMID | 33244514 |
| PQID | 2622641859 |
| PQPubID | 5342773 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687920 proquest_miscellaneous_2465437396 proquest_journals_2622641859 crossref_primary_10_1038_s42256_019_0057_9 crossref_citationtrail_10_1038_s42256_019_0057_9 springer_journals_10_1038_s42256_019_0057_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Basingstoke |
| PublicationTitle | Nature machine intelligence |
| PublicationTitleAbbrev | Nat Mach Intell |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Hu (CR24) 2019; 46 Willemink (CR12) 2013; 23 (CR7) 2011; 2011 Shan (CR19) 2018; 37 Wang, Li, Lu, Liang (CR10) 2006; 25 CR35 CR34 CR33 Geyer (CR11) 2015; 276 CR32 CR31 CR30 de González (CR5) 2009; 169 Chen (CR15) 2017; 36 You (CR23) 2018; 6 Wolterink, Leiner, Viergever, Išgum (CR16) 2017; 36 Kang, Chang, Yoo, Ye (CR18) 2018; 37 Manduca (CR9) 2009; 36 Wang, Lu, Li, Liang (CR8) 2005; 5747 Yang (CR17) 2018; 37 CR29 Liu, Zhang (CR22) 2018; 284 CR28 Smith-Bindman (CR6) 2009; 169 CR27 CR25 Zhu, Liu, Cauley, Rosen, Rosen (CR3) 2018; 555 Wang, Ye, Mueller, Fessler (CR2) 2018; 37 CR21 CR20 Wang (CR1) 2016; 4 Zheng, Ravishankar, Long, Fessler (CR13) 2018; 37 Yi, Babyn (CR26) 2018; 31 Brenner, Hall (CR4) 2007; 357 Chen (CR14) 2017; 8 AB de González (57_CR5) 2009; 169 National Lung Screening Trial Research Team (57_CR7) 2011; 2011 DJ Brenner (57_CR4) 2007; 357 X Zheng (57_CR13) 2018; 37 E Kang (57_CR18) 2018; 37 JM Wolterink (57_CR16) 2017; 36 57_CR35 57_CR34 57_CR33 R Smith-Bindman (57_CR6) 2009; 169 57_CR32 57_CR31 57_CR30 LL Geyer (57_CR11) 2015; 276 H Shan (57_CR19) 2018; 37 X Yi (57_CR26) 2018; 31 Y Liu (57_CR22) 2018; 284 G Wang (57_CR2) 2018; 37 B Zhu (57_CR3) 2018; 555 J Wang (57_CR10) 2006; 25 57_CR29 57_CR28 C You (57_CR23) 2018; 6 57_CR27 J Wang (57_CR8) 2005; 5747 MJ Willemink (57_CR12) 2013; 23 57_CR25 G Wang (57_CR1) 2016; 4 Z Hu (57_CR24) 2019; 46 Q Yang (57_CR17) 2018; 37 57_CR21 57_CR20 H Chen (57_CR15) 2017; 36 A Manduca (57_CR9) 2009; 36 H Chen (57_CR14) 2017; 8 |
| References_xml | – volume: 36 start-page: 2536 year: 2017 end-page: 2545 ident: CR16 article-title: Generative adversarial networks for noise reduction in low-dose CT publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2708987 – volume: 2011 start-page: 395 year: 2011 end-page: 409 ident: CR7 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa1102873 – volume: 357 start-page: 2277 year: 2007 end-page: 2284 ident: CR4 article-title: Computed tomography—an increasing source of radiation exposure publication-title: New Engl. J. Med. doi: 10.1056/NEJMra072149 – volume: 23 start-page: 1632 year: 2013 end-page: 1642 ident: CR12 article-title: Iterative reconstruction techniques for computed tomography. Part 2: Initial results in dose reduction and image quality publication-title: Eur. Radiol. doi: 10.1007/s00330-012-2764-z – volume: 5747 start-page: 2059 year: 2005 ident: CR8 article-title: Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters publication-title: Proc. SPIE – ident: CR30 – volume: 276 start-page: 339 year: 2015 end-page: 357 ident: CR11 article-title: State of the art: iterative CT reconstruction techniques publication-title: Radiology doi: 10.1148/radiol.2015132766 – volume: 37 start-page: 1348 year: 2018 end-page: 1357 ident: CR17 article-title: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – ident: CR33 – ident: CR35 – volume: 36 start-page: 2524 year: 2017 end-page: 2535 ident: CR15 article-title: Low-dose CT with a residual encoder–decoder convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2715284 – ident: CR29 – volume: 555 start-page: 487 year: 2018 end-page: 492 ident: CR3 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – volume: 169 start-page: 2071 year: 2009 end-page: 2077 ident: CR5 article-title: Projected cancer risks from computed tomographic scans performed in the United States in 2007 publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2009.440 – volume: 284 start-page: 80 year: 2018 end-page: 89 ident: CR22 article-title: Low-dose CT restoration via stacked sparse denoising autoencoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.015 – volume: 37 start-page: 1289 year: 2018 end-page: 1296 ident: CR2 article-title: Image reconstruction is a new frontier of machine learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2833635 – ident: CR25 – ident: CR27 – ident: CR21 – volume: 37 start-page: 1522 year: 2018 end-page: 1534 ident: CR19 article-title: 3D convolutional encoder–decoder network for low-dose CT via transfer learning from a 2D trained network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2832217 – volume: 25 start-page: 1272 year: 2006 end-page: 1283 ident: CR10 article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882141 – volume: 8 start-page: 679 year: 2017 end-page: 694 ident: CR14 article-title: Low-dose CT via convolutional neural network publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000679 – volume: 169 start-page: 2078 year: 2009 end-page: 2086 ident: CR6 article-title: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2009.427 – volume: 36 start-page: 4911 year: 2009 end-page: 4919 ident: CR9 article-title: Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT publication-title: Med. Phys. doi: 10.1118/1.3232004 – ident: CR31 – volume: 31 start-page: 655 year: 2018 end-page: 669 ident: CR26 article-title: Sharpness-aware low-dose CT denoising using conditional generative adversarial network publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0056-0 – volume: 46 start-page: 1686 year: 2019 end-page: 1696 ident: CR24 article-title: Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks publication-title: Med. Phys. doi: 10.1002/mp.13415 – volume: 37 start-page: 1498 year: 2018 end-page: 1510 ident: CR13 article-title: PWLS-ULTRA: an efficient clustering and learning-based approach for low-dose 3D CT image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2832007 – volume: 6 start-page: 41839 year: 2018 end-page: 41855 ident: CR23 article-title: Structurally-sensitive multi-scale deep neural network for low-dose CT denoising publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2858196 – ident: CR32 – ident: CR34 – volume: 4 start-page: 8914 year: 2016 end-page: 8924 ident: CR1 article-title: A perspective on deep imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2624938 – volume: 37 start-page: 1358 year: 2018 end-page: 1369 ident: CR18 article-title: Deep convolutional framelet denosing for low-dose CT via wavelet residual network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2823756 – ident: CR28 – ident: CR20 – volume: 555 start-page: 487 year: 2018 ident: 57_CR3 publication-title: Nature doi: 10.1038/nature25988 – volume: 8 start-page: 679 year: 2017 ident: 57_CR14 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000679 – ident: 57_CR27 doi: 10.1007/978-3-319-24574-4_28 – volume: 6 start-page: 41839 year: 2018 ident: 57_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2858196 – volume: 37 start-page: 1358 year: 2018 ident: 57_CR18 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2823756 – volume: 37 start-page: 1522 year: 2018 ident: 57_CR19 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2832217 – volume: 357 start-page: 2277 year: 2007 ident: 57_CR4 publication-title: New Engl. J. Med. doi: 10.1056/NEJMra072149 – volume: 25 start-page: 1272 year: 2006 ident: 57_CR10 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882141 – volume: 37 start-page: 1348 year: 2018 ident: 57_CR17 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – ident: 57_CR35 – volume: 36 start-page: 2524 year: 2017 ident: 57_CR15 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2715284 – ident: 57_CR20 doi: 10.1117/12.2293420 – ident: 57_CR29 doi: 10.1109/CVPR.2017.298 – ident: 57_CR31 – ident: 57_CR33 – volume: 5747 start-page: 2059 year: 2005 ident: 57_CR8 publication-title: Proc. SPIE – ident: 57_CR21 doi: 10.1117/12.2512183 – volume: 37 start-page: 1498 year: 2018 ident: 57_CR13 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2832007 – ident: 57_CR28 – volume: 31 start-page: 655 year: 2018 ident: 57_CR26 publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0056-0 – volume: 169 start-page: 2078 year: 2009 ident: 57_CR6 publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2009.427 – volume: 36 start-page: 4911 year: 2009 ident: 57_CR9 publication-title: Med. Phys. doi: 10.1118/1.3232004 – volume: 46 start-page: 1686 year: 2019 ident: 57_CR24 publication-title: Med. Phys. doi: 10.1002/mp.13415 – volume: 169 start-page: 2071 year: 2009 ident: 57_CR5 publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2009.440 – volume: 284 start-page: 80 year: 2018 ident: 57_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.015 – volume: 4 start-page: 8914 year: 2016 ident: 57_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2624938 – ident: 57_CR25 doi: 10.1109/EMBC.2019.8857940 – ident: 57_CR32 – volume: 276 start-page: 339 year: 2015 ident: 57_CR11 publication-title: Radiology doi: 10.1148/radiol.2015132766 – volume: 23 start-page: 1632 year: 2013 ident: 57_CR12 publication-title: Eur. Radiol. doi: 10.1007/s00330-012-2764-z – volume: 2011 start-page: 395 year: 2011 ident: 57_CR7 publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa1102873 – ident: 57_CR34 – ident: 57_CR30 – volume: 37 start-page: 1289 year: 2018 ident: 57_CR2 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2833635 – volume: 36 start-page: 2536 year: 2017 ident: 57_CR16 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2708987 |
| SSID | ssj0002144504 |
| Score | 2.5664139 |
| Snippet | Commercial iterative reconstruction techniques help to reduce the radiation dose of computed tomography (CT), but altered image appearance and artefacts can... Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 269 |
| SubjectTerms | 631/114/1305 692/700/1421 692/700/1421/1846/2771 Algorithms Artificial neural networks Cloning Computed tomography Deep learning Engineering Image quality Image reconstruction Iterative methods Machine learning Medical imaging Modular design Neural networks Noise Noise reduction Performance evaluation Process mapping Radiation Radiation dosage Scanners Workflow |
| Title | Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction |
| URI | https://link.springer.com/article/10.1038/s42256-019-0057-9 https://www.proquest.com/docview/2622641859 https://www.proquest.com/docview/2465437396 https://pubmed.ncbi.nlm.nih.gov/PMC7687920 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2522-5839 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002144504 issn: 2522-5839 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GUvY6Mdy9YVFfa0IapYtmw9lLGFpmWwUEYLfTOyfqyBxM5IxmCv_cd3p9gOKbRvBsmS8HeS7nx33wF8FE5pqWTgidUpGihuxI3SFTfG-Ew7q7yg3OEfU3V1m36_y-72YNrlwlBYZXcmxoPaNZb-kZ8lilI-8XbRX5a_OVWNIu9qV0LDtKUV3HmkGNuHg4SYsQZw8O1iev2z_-tCBGGZSDv3pizOVilKNBnVmlNiJte7F9RW63wcM_nIcRrvo8kreNkqkuzrBvnXsOfrQ3gYRzU4xgOx5TYngDWBGbZoHAWdzv55x5z3S0ZkljhGvQkFZ108Ols39LygYkzYbOa_8EOs7xcrhuOxefOXu2bl2fiGzRZ4HLFoVPdEtEdwO7m4GV_xtswCt2ku1rywIcusCGaUKxGUNd5WCGHwNhGZrzIbZCESm-QhDTIQH31eoe1pRoUujHFevoFB3dT-LTDrKNpDF8FVPq1QuXHSosUYUK1zI-XUEET3bUvbcpBTKYx5GX3hsig3cJQIR0lwlHoIn_pXlhsCjuc6H3eAle1eXJVbyRnCad-Mu4hcI6b2zR_sQ7RyMpcal5jvAN1PSjzcuy317D7ycaPFlutEDOFzJxLbyZ9c6rvnl_oeXiRRJkk0j2GAGPoPqP6sqxPYLyaXJ61k_wdd8Qmx |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gAvaAgQHWMYCV5A1lw7ceKHaYKyqWNbhVAn7S04_sMqtUlRiqbxyvfis3GXJqk6ib3tLZIT2_Hd2Xe-u98R8pY7paWSgQmrIzBQXJ8ZpXNmjPGxdlZ5jrnD5yM1vIi-XMaXG-RvmwuDYZXtnlhv1K60eEe-LxSmfMLpog_nPxlWjULvaltCwzSlFdxBDTHWJHac-ptrMOGqg5PPQO93QhwfjQdD1lQZYDZK-IKlNsSx5cH0E8WDssbbHP4geCt47PPYBplyYUUSoiADwrEnOZhepp_q1BjnJfT7gGxFMtJg_G19Ohp9_dbd8iAgWcyj1p0q0_0qAglCI14zTARlev1AXGm5t2M0bzlq6_PveJs8bhRX-nHJaU_Ihi-ekj-DWu2u44_ofJWDQMtADZ2VDoNcJ7-9o877OUXwTOijWIae0zb-nS5KfJ5h8SdoNtMfsPCLq1lFoT86La-ZKytPB2M6mcH2R2sjvgO-fUYu7mXBn5PNoiz8C0Ktw-gSnQaX-ygHZcpJCxZqADXS9ZVTPcLbtc1sg3mOpTemWe17l2m2JEcG5MiQHJnukffdJ_Ml4MddL--2BMsa2a-yFaf2yJuuGaQWXTGm8OUveAdh7GQiNUwxWSN0Nyjifq-3FJOrGv8bLMREC94jH1qWWA3-36nu3D3V1-ThcHx-lp2djE5fkkei5k9k012yCfT0r0D1WuR7DX9T8v2-ReofmoBHgw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1gvgiioqnVSPoixIul-xmNw8icvVsrRYfWujbms2HPbjbPdmToq_-V_51zmQ_jivYt74tJJuEzEwyk5n5DSEvuVNaKhmYsDoBA8VNmFG6ZMYYn2pnleeYO_zlWB2cJp_O0rMd8rfPhcGwyv5MjAe1qy2-kY-FwpRPuF30OHRhEV_3Z-9WPxhWkEJPa19Oo2WRI__rAsy35u3hPtD6lRCzDyfTA9ZVGGA2yfia5TakqeXBTDLFg7LG2xJWH7wVPPVlaoPMubAiC0mQAaHYsxLMLjPJdW6M8xLGvUFuZojijlnqs4_D-w5CkaU86R2pMh83CcgOmu-aYQoo09tX4Ua_vRydeclFG2--2V1yp1NZ6fuWx-6RHV_dJ3-mUeGOkUd0tck-oHWghi5rh-Gt89_eUef9iiJsJoxRtUHntI98p-sav5dY9gmazeI7bPP6fNlQGI8u6gvm6sbT6QmdL-Hgo9F8HyBvH5DTa9nuh2S3qiv_iFDrMK5E58GVPilBjXLSgm0aQIF0E-XUiPB-bwvboZ1j0Y1FEb3uMi9achRAjgLJUegReT38smqhPq7qvNcTrOikvik2PDoiL4ZmkFd0wpjK1z-hDwLYyUxqWGK2RehhUkT83m6p5ucR-Rtsw0wLPiJvepbYTP7fpT6-eqnPyS0QpOLz4fHRE3JbRPZELt0ju0BO_xR0rnX5LDI3Jd-uW5r-Ab7qRR0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+performance+of+a+modularized+deep+neural+network+compared+to+commercial+algorithms+for+low-dose+CT+image+reconstruction&rft.jtitle=Nature+machine+intelligence&rft.au=Shan%2C+Hongming&rft.au=Padole%2C+Atul&rft.au=Homayounieh%2C+Fatemeh&rft.au=Kruger%2C+Uwe&rft.date=2019-06-01&rft.issn=2522-5839&rft.eissn=2522-5839&rft.volume=1&rft.issue=6&rft.spage=269&rft.epage=276&rft_id=info:doi/10.1038%2Fs42256-019-0057-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42256_019_0057_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5839&client=summon |