Bayes Optimality in Linear Discriminant Analysis

We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is ident...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 4; pp. 647 - 657
Main Authors Hamsici, O.C., Martinez, A.M.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.04.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
DOI10.1109/TPAMI.2007.70717

Cover

Abstract We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d dimensional solution for any given d by iteratively applying our algorithm to the null space of the (d - l)-dimensional solution. We also show how this result can be used to improve upon the outcomes provided by existing algorithms and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
AbstractList We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d dimensional solution for any given d by iteratively applying our algorithm to the null space of the (d - l)-dimensional solution. We also show how this result can be used to improve upon the outcomes provided by existing algorithms and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one- dimensional spaces [abstract truncated by publisher].
We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
Author Hamsici, O.C.
Martinez, A.M.
Author_xml – sequence: 1
  givenname: O.C.
  surname: Hamsici
  fullname: Hamsici, O.C.
  organization: Ohio State Univ., Columbus
– sequence: 2
  givenname: A.M.
  surname: Martinez
  fullname: Martinez, A.M.
  organization: Ohio State Univ., Columbus
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20176301$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18276970$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktrGzEUBWBRUhon7b5QKEMhbTfjXOnqNUsnfQVc0kW6HjQaCRTGGlcaL_zvK8dOClm4K22-c3WRzhk5iWN0hLylMKcUmsu7X4ufN3MGoOYKFFUvyIw22NQosDkhM6CS1VozfUrOcr4HoFwAviKnVDMlGwUzAldm63J1u57Cygxh2lYhVssQnUnVl5BtCqsQTZyqRTTDNof8mrz0ZsjuzeE8J7-_fb27_lEvb7_fXC-WteUKppp61luvtBei7wB6wwVFVLIXaEUPXnSgegtofI-cGo2066T1mnFHmfYWz8mn_dx1Gv9sXJ7aVVnHDYOJbtzktgGUtMxURX48KhWwBqhq_guRc6qBQYGfj0IqVVlScC0L_fCM3o-bVN4qt1oyFIzzHXp_QJtu5fp2XV7VpG37-A0FXByAydYMPploQ35yrKwvEWhxsHc2jTkn5_-NgnbXiPahEe2uEe1DI0pEPovYMJkpjHFKJgzHgu_2weCce7qHo2gQNf4Fm5W_DQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3265472
crossref_primary_10_1016_j_patcog_2010_11_001
crossref_primary_10_1016_j_neucom_2016_05_017
crossref_primary_10_1016_j_patcog_2013_01_037
crossref_primary_10_1016_j_patcog_2013_07_021
crossref_primary_10_1109_TNNLS_2012_2198075
crossref_primary_10_1016_j_patcog_2011_07_024
crossref_primary_10_1016_j_patcog_2014_11_008
crossref_primary_10_1016_j_patcog_2009_07_007
crossref_primary_10_1016_j_patcog_2014_12_001
crossref_primary_10_1016_j_patrec_2018_04_020
crossref_primary_10_1016_j_neucom_2014_02_004
crossref_primary_10_1109_TNNLS_2012_2230406
crossref_primary_10_1016_j_neucom_2014_07_028
crossref_primary_10_1016_j_patcog_2013_06_018
crossref_primary_10_7717_peerj_11825
crossref_primary_10_1016_j_patcog_2010_08_026
crossref_primary_10_1142_S0218001410008068
crossref_primary_10_1109_TPAMI_2023_3323453
crossref_primary_10_1109_TNNLS_2015_2504538
crossref_primary_10_1016_j_patcog_2011_01_009
crossref_primary_10_1007_s00521_015_1966_0
crossref_primary_10_1016_j_patcog_2015_05_027
crossref_primary_10_1145_2168752_2168765
crossref_primary_10_1145_2972957
crossref_primary_10_1016_j_eswa_2017_02_039
crossref_primary_10_1016_j_patcog_2011_11_018
crossref_primary_10_1109_TPAMI_2020_3026069
crossref_primary_10_1016_j_procs_2018_10_299
crossref_primary_10_1016_j_sigpro_2024_109421
crossref_primary_10_1016_j_jcyt_2024_03_011
crossref_primary_10_1109_TCYB_2019_2912806
crossref_primary_10_1002_sim_7810
crossref_primary_10_1007_s11063_015_9441_6
crossref_primary_10_1016_j_neucom_2018_07_090
crossref_primary_10_1109_TPAMI_2017_2666148
crossref_primary_10_1145_2499907_2499911
crossref_primary_10_1109_TNNLS_2018_2890103
crossref_primary_10_1007_s10489_009_0202_y
crossref_primary_10_1016_j_neucom_2014_11_102
crossref_primary_10_1016_j_neucom_2020_06_136
crossref_primary_10_1016_j_neunet_2013_05_010
crossref_primary_10_1155_2018_2861695
crossref_primary_10_1016_j_patcog_2009_10_004
crossref_primary_10_1016_j_patcog_2010_01_018
crossref_primary_10_1109_TPAMI_2008_123
crossref_primary_10_1016_j_patrec_2015_09_013
crossref_primary_10_1109_TPAMI_2014_2327983
crossref_primary_10_32604_cmc_2021_014631
crossref_primary_10_1137_100792007
crossref_primary_10_1080_10106049_2011_653407
crossref_primary_10_1016_j_neucom_2014_06_030
crossref_primary_10_1109_TNNLS_2015_2477321
crossref_primary_10_1016_j_imavis_2010_05_001
crossref_primary_10_1016_j_ecolind_2020_106386
crossref_primary_10_1016_j_eswa_2017_09_010
crossref_primary_10_1523_JNEUROSCI_1704_15_2016
crossref_primary_10_1016_j_patcog_2008_11_011
crossref_primary_10_1109_TIFS_2014_2343833
crossref_primary_10_1109_TPAMI_2010_173
crossref_primary_10_1109_TPAMI_2017_2665545
crossref_primary_10_1109_TCYB_2020_3017638
crossref_primary_10_1109_TKDE_2017_2728531
crossref_primary_10_1515_revac_2022_0046
crossref_primary_10_1002_adom_202203104
crossref_primary_10_1016_j_neucom_2014_06_005
crossref_primary_10_1016_j_patcog_2010_09_019
crossref_primary_10_1016_j_patcog_2019_107030
crossref_primary_10_1016_j_neucom_2013_12_015
crossref_primary_10_1109_TNNLS_2013_2294547
crossref_primary_10_1016_j_visres_2010_05_024
crossref_primary_10_1109_TPAMI_2014_2327978
crossref_primary_10_1109_TPAMI_2010_189
crossref_primary_10_1109_TIP_2017_2704438
crossref_primary_10_1109_TIP_2018_2836312
crossref_primary_10_1016_j_patcog_2008_04_018
Cites_doi 10.1016/0378-3758(84)90068-5
10.1109/TNN.2002.806647
10.1109/TPAMI.1983.4767461
10.1109/TPAMI.2003.1251149
10.1162/089976600300014980
10.1016/S0140-6736(05)17866-0
10.1109/CVPR.2003.1211497
10.1109/34.908974
10.1016/B978-0-12-714250-0.50015-2
10.1137/1.9781611976571
10.1109/NNSP.1999.788121
10.1073/pnas.162485599
10.1109/34.862200
10.1111/j.1469-1809.1938.tb02189.x
10.1002/9780470316436
10.1109/34.935849
10.1016/j.jchromb.2004.09.023
10.1109/TCBB.2004.45
10.1109/TPAMI.2005.250
10.1109/CVPR.2005.268
10.1207/s15327108ijap1401_6
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2007.70717
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database

Technology Research Database
MEDLINE - Academic
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 657
ExternalDocumentID 2322976741
18276970
20176301
10_1109_TPAMI_2007_70717
4359338
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC 005241
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c470t-1f2dcf78f55db00da4513376d53c5d0f5b07dc03afd341a831bb6cf824e128fc3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Oct 02 07:01:35 EDT 2025
Sun Sep 28 00:05:55 EDT 2025
Sun Sep 28 06:22:57 EDT 2025
Wed Oct 01 14:32:51 EDT 2025
Sun Jun 29 16:07:56 EDT 2025
Thu Apr 03 07:06:43 EDT 2025
Mon Jul 21 09:15:25 EDT 2025
Wed Oct 01 06:41:59 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Aug 26 16:47:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords feature extraction
data mining
Bayes optimal
convex optimization
Linear discriminant analysis
data visualization
pattern recognition
Validation
Discriminant analysis
Data analysis
Error function
Gaussian distribution
Minimization
Information extraction
Pattern recognition
Data mining
Convex programming
Kernel function
Vector space
Linear approximation
Data visualization
Classification
Feature extraction
Convex function
Pattern analysis
Artificial intelligence
Algorithm analysis
Pattern extraction
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-1f2dcf78f55db00da4513376d53c5d0f5b07dc03afd341a831bb6cf824e128fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 18276970
PQID 862352446
PQPubID 23500
PageCount 11
ParticipantIDs ieee_primary_4359338
crossref_primary_10_1109_TPAMI_2007_70717
proquest_miscellaneous_70290179
proquest_miscellaneous_34418020
crossref_citationtrail_10_1109_TPAMI_2007_70717
proquest_journals_862352446
pascalfrancis_primary_20176301
proquest_miscellaneous_1671285486
pubmed_primary_18276970
proquest_miscellaneous_903615137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2008
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Newman (ref16) 1998
References_xml – ident: ref20
  doi: 10.1016/0378-3758(84)90068-5
– ident: ref11
  doi: 10.1109/TNN.2002.806647
– ident: ref5
  doi: 10.1109/TPAMI.1983.4767461
– ident: ref3
  doi: 10.1109/TPAMI.2003.1251149
– ident: ref2
  doi: 10.1162/089976600300014980
– ident: ref14
  doi: 10.1016/S0140-6736(05)17866-0
– ident: ref8
  doi: 10.1109/CVPR.2003.1211497
– ident: ref12
  doi: 10.1109/34.908974
– ident: ref6
  doi: 10.1016/B978-0-12-714250-0.50015-2
– year: 1998
  ident: ref16
  article-title: UCI Repository of Machine Learning Databases
– ident: ref7
  doi: 10.1137/1.9781611976571
– ident: ref15
  doi: 10.1109/NNSP.1999.788121
– ident: ref1
  doi: 10.1073/pnas.162485599
– ident: ref10
  doi: 10.1109/34.862200
– ident: ref4
  doi: 10.1111/j.1469-1809.1938.tb02189.x
– ident: ref18
  doi: 10.1002/9780470316436
– ident: ref9
  doi: 10.1109/34.935849
– ident: ref21
  doi: 10.1016/j.jchromb.2004.09.023
– ident: ref22
  doi: 10.1109/TCBB.2004.45
– ident: ref13
  doi: 10.1109/TPAMI.2005.250
– ident: ref17
  doi: 10.1109/CVPR.2005.268
– ident: ref19
  doi: 10.1207/s15327108ijap1401_6
SSID ssj0014503
Score 2.3028169
Snippet We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian...
We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian...
Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms Algorithms
Applied sciences
Approximation algorithms
Artificial Intelligence
Bayes optimal
Bayes Theorem
Bayesian analysis
Classification algorithms
Computer science; control theory; systems
Computer Simulation
convex optimization
Costs
data mining
Data processing. List processing. Character string processing
data visualization
Discriminant Analysis
Error functions
Exact sciences and technology
feature extraction
Gaussian distribution
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information systems. Data bases
Intelligence
Iterative algorithms
Kernel
Linear approximation
Linear discriminant analysis
Linear Models
Memory organisation. Data processing
Minimization
Minimization methods
Null space
Optimization
Pattern analysis
pattern recognition
Pattern Recognition, Automated - methods
Permissible error
Reproducibility of Results
Sensitivity and Specificity
Software
Studies
Title Bayes Optimality in Linear Discriminant Analysis
URI https://ieeexplore.ieee.org/document/4359338
https://www.ncbi.nlm.nih.gov/pubmed/18276970
https://www.proquest.com/docview/862352446
https://www.proquest.com/docview/1671285486
https://www.proquest.com/docview/34418020
https://www.proquest.com/docview/70290179
https://www.proquest.com/docview/903615137
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjFIqRuCCRXSdOMs6xPKqCtMChlXqL_JQqIIvY3QP8esZ2EgpiEbdInkjx2OP5JjOeD-CZIyegWtS5UKjyygiVq8qELLuoLUrTKBf-Qy7eN2cX1bvL-nIHXkx3YZxzsfjMzcJjzOXbpdmEX2Vzcu0Uf8td2EXZpLtaU8agqiMLMiEYsnAKI8aUJG_n5x9PFm9Tt0IM4UtoFCpLbNrAUHzNG0V6lVAcqVakH5-ILbYjz-iBTvdhMX57Kjz5NNus9cz8-KOt4_9O7jbcGqAoO0l75w7suP4A9keaBzZY_QHcvNaz8BD4S_XdrdgHOmq-RAzPrnpGES1ZDHt9FQ6hVFzDxnYnd-Hi9M35q7N8oF3ITYV8nRe-tMaj9HVtySitqgIHDDa2Fqa23NeaozVcKG_JBSopCq0b42VZOXJ23oh7sNcve_cAWIk-xL22dKgr2ixtSyKCpqnpXNGIGcxH9Xdm6EkeqDE-dzE24W0X1y5wZWIX1y6D59MbX1M_jn_IHgY1T3KDhjM4_m2Fp3HCQnTa8iKDo3HJu8GiVx1FfoRVKXjO4Ok0SqYY8iuqd8vNqisaLMKFVEkyT7bICIKfkiD6dgnkIbWNbQZsi0RLqIOAmqAJ3k8b8pcqhn398O9TP4Ibqd4lVB49gr31t417TKBqrY-jNf0EncEaeA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLbQUQktrJC5IZNeJ7Tg5lkK1hW7hsJV6i_yUKiCL2N1D-fWMnQcFsYhbJE-keOzxfJMZzwfw0qETUJXUKVNSpdwwlSpuQpadCStLUygX_kNOL4rJJX9_Ja424PVwF8Y5F4vP3Cg8xly-nZtV-FU2RteO8Xd5B-4Kzrlob2sNOQMuIg8yYhi0cQwk-qQkrcazT8fTs7ZfoQwBTGgVWuayqAJH8S1_FAlWQnmkWqCGfEttsR57Rh90ug3T_uvb0pPPo9VSj8yPPxo7_u_0HsJWB0bJcbt7HsGGa3Zguyd6IJ3d78CDW10Ld4G-UTduQT7iYfM1onhy3RCMadFmyNvrcAy15TWkb3jyGC5P381OJmlHvJAaLukyzXxujZelF8KiWVrFAwuMLKxgRljqhabSGsqUt-gEVckyrQvjy5w7dHfesD3YbOaNewoklz5EvjZ3UnPcLlWFIgynqfFk0VImMO7VX5uuK3kgx_hSx-iEVnVcu8CWKeu4dgm8Gt741nbk-IfsblDzINdpOIHD31Z4GEc0hOctzRLY75e87mx6UWPsh2gVw-cEXgyjaIwhw6IaN18t6qyQWbiSWqLM0RoZhgC0RJC-XkLSkNyWVQJkjUSFuAOhGsMJPmk35C9VdPv62d-nfgT3JrPpeX1-dvFhH-631S-hDukANpffV-45QqylPoyW9ROEwR3F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayes+Optimality+in+Linear+Discriminant+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hamsici%2C+O.C.&rft.au=Martinez%2C+A.M.&rft.date=2008-04-01&rft.issn=0162-8828&rft.volume=30&rft.issue=4&rft.spage=647&rft.epage=657&rft_id=info:doi/10.1109%2FTPAMI.2007.70717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2007_70717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon