Bayes Optimality in Linear Discriminant Analysis
We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is ident...
        Saved in:
      
    
          | Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 4; pp. 647 - 657 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Los Alamitos, CA
          IEEE
    
        01.04.2008
     IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0162-8828 1939-3539  | 
| DOI | 10.1109/TPAMI.2007.70717 | 
Cover
| Abstract | We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d dimensional solution for any given d by iteratively applying our algorithm to the null space of the (d - l)-dimensional solution. We also show how this result can be used to improve upon the outcomes provided by existing algorithms and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization. | 
    
|---|---|
| AbstractList | We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization. We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d dimensional solution for any given d by iteratively applying our algorithm to the null space of the (d - l)-dimensional solution. We also show how this result can be used to improve upon the outcomes provided by existing algorithms and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization. We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one- dimensional spaces [abstract truncated by publisher]. We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.  | 
    
| Author | Hamsici, O.C. Martinez, A.M.  | 
    
| Author_xml | – sequence: 1 givenname: O.C. surname: Hamsici fullname: Hamsici, O.C. organization: Ohio State Univ., Columbus – sequence: 2 givenname: A.M. surname: Martinez fullname: Martinez, A.M. organization: Ohio State Univ., Columbus  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20176301$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18276970$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqF0ktrGzEUBWBRUhon7b5QKEMhbTfjXOnqNUsnfQVc0kW6HjQaCRTGGlcaL_zvK8dOClm4K22-c3WRzhk5iWN0hLylMKcUmsu7X4ufN3MGoOYKFFUvyIw22NQosDkhM6CS1VozfUrOcr4HoFwAviKnVDMlGwUzAldm63J1u57Cygxh2lYhVssQnUnVl5BtCqsQTZyqRTTDNof8mrz0ZsjuzeE8J7-_fb27_lEvb7_fXC-WteUKppp61luvtBei7wB6wwVFVLIXaEUPXnSgegtofI-cGo2066T1mnFHmfYWz8mn_dx1Gv9sXJ7aVVnHDYOJbtzktgGUtMxURX48KhWwBqhq_guRc6qBQYGfj0IqVVlScC0L_fCM3o-bVN4qt1oyFIzzHXp_QJtu5fp2XV7VpG37-A0FXByAydYMPploQ35yrKwvEWhxsHc2jTkn5_-NgnbXiPahEe2uEe1DI0pEPovYMJkpjHFKJgzHgu_2weCce7qHo2gQNf4Fm5W_DQ | 
    
| CODEN | ITPIDJ | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3265472 crossref_primary_10_1016_j_patcog_2010_11_001 crossref_primary_10_1016_j_neucom_2016_05_017 crossref_primary_10_1016_j_patcog_2013_01_037 crossref_primary_10_1016_j_patcog_2013_07_021 crossref_primary_10_1109_TNNLS_2012_2198075 crossref_primary_10_1016_j_patcog_2011_07_024 crossref_primary_10_1016_j_patcog_2014_11_008 crossref_primary_10_1016_j_patcog_2009_07_007 crossref_primary_10_1016_j_patcog_2014_12_001 crossref_primary_10_1016_j_patrec_2018_04_020 crossref_primary_10_1016_j_neucom_2014_02_004 crossref_primary_10_1109_TNNLS_2012_2230406 crossref_primary_10_1016_j_neucom_2014_07_028 crossref_primary_10_1016_j_patcog_2013_06_018 crossref_primary_10_7717_peerj_11825 crossref_primary_10_1016_j_patcog_2010_08_026 crossref_primary_10_1142_S0218001410008068 crossref_primary_10_1109_TPAMI_2023_3323453 crossref_primary_10_1109_TNNLS_2015_2504538 crossref_primary_10_1016_j_patcog_2011_01_009 crossref_primary_10_1007_s00521_015_1966_0 crossref_primary_10_1016_j_patcog_2015_05_027 crossref_primary_10_1145_2168752_2168765 crossref_primary_10_1145_2972957 crossref_primary_10_1016_j_eswa_2017_02_039 crossref_primary_10_1016_j_patcog_2011_11_018 crossref_primary_10_1109_TPAMI_2020_3026069 crossref_primary_10_1016_j_procs_2018_10_299 crossref_primary_10_1016_j_sigpro_2024_109421 crossref_primary_10_1016_j_jcyt_2024_03_011 crossref_primary_10_1109_TCYB_2019_2912806 crossref_primary_10_1002_sim_7810 crossref_primary_10_1007_s11063_015_9441_6 crossref_primary_10_1016_j_neucom_2018_07_090 crossref_primary_10_1109_TPAMI_2017_2666148 crossref_primary_10_1145_2499907_2499911 crossref_primary_10_1109_TNNLS_2018_2890103 crossref_primary_10_1007_s10489_009_0202_y crossref_primary_10_1016_j_neucom_2014_11_102 crossref_primary_10_1016_j_neucom_2020_06_136 crossref_primary_10_1016_j_neunet_2013_05_010 crossref_primary_10_1155_2018_2861695 crossref_primary_10_1016_j_patcog_2009_10_004 crossref_primary_10_1016_j_patcog_2010_01_018 crossref_primary_10_1109_TPAMI_2008_123 crossref_primary_10_1016_j_patrec_2015_09_013 crossref_primary_10_1109_TPAMI_2014_2327983 crossref_primary_10_32604_cmc_2021_014631 crossref_primary_10_1137_100792007 crossref_primary_10_1080_10106049_2011_653407 crossref_primary_10_1016_j_neucom_2014_06_030 crossref_primary_10_1109_TNNLS_2015_2477321 crossref_primary_10_1016_j_imavis_2010_05_001 crossref_primary_10_1016_j_ecolind_2020_106386 crossref_primary_10_1016_j_eswa_2017_09_010 crossref_primary_10_1523_JNEUROSCI_1704_15_2016 crossref_primary_10_1016_j_patcog_2008_11_011 crossref_primary_10_1109_TIFS_2014_2343833 crossref_primary_10_1109_TPAMI_2010_173 crossref_primary_10_1109_TPAMI_2017_2665545 crossref_primary_10_1109_TCYB_2020_3017638 crossref_primary_10_1109_TKDE_2017_2728531 crossref_primary_10_1515_revac_2022_0046 crossref_primary_10_1002_adom_202203104 crossref_primary_10_1016_j_neucom_2014_06_005 crossref_primary_10_1016_j_patcog_2010_09_019 crossref_primary_10_1016_j_patcog_2019_107030 crossref_primary_10_1016_j_neucom_2013_12_015 crossref_primary_10_1109_TNNLS_2013_2294547 crossref_primary_10_1016_j_visres_2010_05_024 crossref_primary_10_1109_TPAMI_2014_2327978 crossref_primary_10_1109_TPAMI_2010_189 crossref_primary_10_1109_TIP_2017_2704438 crossref_primary_10_1109_TIP_2018_2836312 crossref_primary_10_1016_j_patcog_2008_04_018  | 
    
| Cites_doi | 10.1016/0378-3758(84)90068-5 10.1109/TNN.2002.806647 10.1109/TPAMI.1983.4767461 10.1109/TPAMI.2003.1251149 10.1162/089976600300014980 10.1016/S0140-6736(05)17866-0 10.1109/CVPR.2003.1211497 10.1109/34.908974 10.1016/B978-0-12-714250-0.50015-2 10.1137/1.9781611976571 10.1109/NNSP.1999.788121 10.1073/pnas.162485599 10.1109/34.862200 10.1111/j.1469-1809.1938.tb02189.x 10.1002/9780470316436 10.1109/34.935849 10.1016/j.jchromb.2004.09.023 10.1109/TCBB.2004.45 10.1109/TPAMI.2005.250 10.1109/CVPR.2005.268 10.1207/s15327108ijap1401_6  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008  | 
    
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008  | 
    
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| DOI | 10.1109/TPAMI.2007.70717 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Technology Research Database Technology Research Database MEDLINE - Academic Technology Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Applied Sciences  | 
    
| EISSN | 1939-3539 | 
    
| EndPage | 657 | 
    
| ExternalDocumentID | 2322976741 18276970 20176301 10_1109_TPAMI_2007_70717 4359338  | 
    
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC 005241  | 
    
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8  | 
    
| ID | FETCH-LOGICAL-c470t-1f2dcf78f55db00da4513376d53c5d0f5b07dc03afd341a831bb6cf824e128fc3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0162-8828 | 
    
| IngestDate | Thu Oct 02 07:01:35 EDT 2025 Sun Sep 28 00:05:55 EDT 2025 Sun Sep 28 06:22:57 EDT 2025 Wed Oct 01 14:32:51 EDT 2025 Sun Jun 29 16:07:56 EDT 2025 Thu Apr 03 07:06:43 EDT 2025 Mon Jul 21 09:15:25 EDT 2025 Wed Oct 01 06:41:59 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Aug 26 16:47:22 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | feature extraction data mining Bayes optimal convex optimization Linear discriminant analysis data visualization pattern recognition Validation Discriminant analysis Data analysis Error function Gaussian distribution Minimization Information extraction Pattern recognition Data mining Convex programming Kernel function Vector space Linear approximation Data visualization Classification Feature extraction Convex function Pattern analysis Artificial intelligence Algorithm analysis Pattern extraction  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c470t-1f2dcf78f55db00da4513376d53c5d0f5b07dc03afd341a831bb6cf824e128fc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| PMID | 18276970 | 
    
| PQID | 862352446 | 
    
| PQPubID | 23500 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | ieee_primary_4359338 crossref_primary_10_1109_TPAMI_2007_70717 proquest_miscellaneous_70290179 proquest_miscellaneous_34418020 crossref_citationtrail_10_1109_TPAMI_2007_70717 proquest_journals_862352446 pascalfrancis_primary_20176301 proquest_miscellaneous_1671285486 pubmed_primary_18276970 proquest_miscellaneous_903615137  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-04-01 | 
    
| PublicationDateYYYYMMDD | 2008-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Los Alamitos, CA | 
    
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence | 
    
| PublicationTitleAbbrev | TPAMI | 
    
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell | 
    
| PublicationYear | 2008 | 
    
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Newman (ref16) 1998  | 
    
| References_xml | – ident: ref20 doi: 10.1016/0378-3758(84)90068-5 – ident: ref11 doi: 10.1109/TNN.2002.806647 – ident: ref5 doi: 10.1109/TPAMI.1983.4767461 – ident: ref3 doi: 10.1109/TPAMI.2003.1251149 – ident: ref2 doi: 10.1162/089976600300014980 – ident: ref14 doi: 10.1016/S0140-6736(05)17866-0 – ident: ref8 doi: 10.1109/CVPR.2003.1211497 – ident: ref12 doi: 10.1109/34.908974 – ident: ref6 doi: 10.1016/B978-0-12-714250-0.50015-2 – year: 1998 ident: ref16 article-title: UCI Repository of Machine Learning Databases – ident: ref7 doi: 10.1137/1.9781611976571 – ident: ref15 doi: 10.1109/NNSP.1999.788121 – ident: ref1 doi: 10.1073/pnas.162485599 – ident: ref10 doi: 10.1109/34.862200 – ident: ref4 doi: 10.1111/j.1469-1809.1938.tb02189.x – ident: ref18 doi: 10.1002/9780470316436 – ident: ref9 doi: 10.1109/34.935849 – ident: ref21 doi: 10.1016/j.jchromb.2004.09.023 – ident: ref22 doi: 10.1109/TCBB.2004.45 – ident: ref13 doi: 10.1109/TPAMI.2005.250 – ident: ref17 doi: 10.1109/CVPR.2005.268 – ident: ref19 doi: 10.1207/s15327108ijap1401_6  | 
    
| SSID | ssj0014503 | 
    
| Score | 2.3028169 | 
    
| Snippet | We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian... We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian... Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.  | 
    
| SourceID | proquest pubmed pascalfrancis crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 647 | 
    
| SubjectTerms | Algorithms Applied sciences Approximation algorithms Artificial Intelligence Bayes optimal Bayes Theorem Bayesian analysis Classification algorithms Computer science; control theory; systems Computer Simulation convex optimization Costs data mining Data processing. List processing. Character string processing data visualization Discriminant Analysis Error functions Exact sciences and technology feature extraction Gaussian distribution Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Information systems. Data bases Intelligence Iterative algorithms Kernel Linear approximation Linear discriminant analysis Linear Models Memory organisation. Data processing Minimization Minimization methods Null space Optimization Pattern analysis pattern recognition Pattern Recognition, Automated - methods Permissible error Reproducibility of Results Sensitivity and Specificity Software Studies  | 
    
| Title | Bayes Optimality in Linear Discriminant Analysis | 
    
| URI | https://ieeexplore.ieee.org/document/4359338 https://www.ncbi.nlm.nih.gov/pubmed/18276970 https://www.proquest.com/docview/862352446 https://www.proquest.com/docview/1671285486 https://www.proquest.com/docview/34418020 https://www.proquest.com/docview/70290179 https://www.proquest.com/docview/903615137  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjFIqRuCCRXSdOMs6xPKqCtMChlXqL_JQqIIvY3QP8esZ2EgpiEbdInkjx2OP5JjOeD-CZIyegWtS5UKjyygiVq8qELLuoLUrTKBf-Qy7eN2cX1bvL-nIHXkx3YZxzsfjMzcJjzOXbpdmEX2Vzcu0Uf8td2EXZpLtaU8agqiMLMiEYsnAKI8aUJG_n5x9PFm9Tt0IM4UtoFCpLbNrAUHzNG0V6lVAcqVakH5-ILbYjz-iBTvdhMX57Kjz5NNus9cz8-KOt4_9O7jbcGqAoO0l75w7suP4A9keaBzZY_QHcvNaz8BD4S_XdrdgHOmq-RAzPrnpGES1ZDHt9FQ6hVFzDxnYnd-Hi9M35q7N8oF3ITYV8nRe-tMaj9HVtySitqgIHDDa2Fqa23NeaozVcKG_JBSopCq0b42VZOXJ23oh7sNcve_cAWIk-xL22dKgr2ixtSyKCpqnpXNGIGcxH9Xdm6EkeqDE-dzE24W0X1y5wZWIX1y6D59MbX1M_jn_IHgY1T3KDhjM4_m2Fp3HCQnTa8iKDo3HJu8GiVx1FfoRVKXjO4Ok0SqYY8iuqd8vNqisaLMKFVEkyT7bICIKfkiD6dgnkIbWNbQZsi0RLqIOAmqAJ3k8b8pcqhn398O9TP4Ibqd4lVB49gr31t417TKBqrY-jNf0EncEaeA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLbQUQktrJC5IZNeJ7Tg5lkK1hW7hsJV6i_yUKiCL2N1D-fWMnQcFsYhbJE-keOzxfJMZzwfw0qETUJXUKVNSpdwwlSpuQpadCStLUygX_kNOL4rJJX9_Ja424PVwF8Y5F4vP3Cg8xly-nZtV-FU2RteO8Xd5B-4Kzrlob2sNOQMuIg8yYhi0cQwk-qQkrcazT8fTs7ZfoQwBTGgVWuayqAJH8S1_FAlWQnmkWqCGfEttsR57Rh90ug3T_uvb0pPPo9VSj8yPPxo7_u_0HsJWB0bJcbt7HsGGa3Zguyd6IJ3d78CDW10Ld4G-UTduQT7iYfM1onhy3RCMadFmyNvrcAy15TWkb3jyGC5P381OJmlHvJAaLukyzXxujZelF8KiWVrFAwuMLKxgRljqhabSGsqUt-gEVckyrQvjy5w7dHfesD3YbOaNewoklz5EvjZ3UnPcLlWFIgynqfFk0VImMO7VX5uuK3kgx_hSx-iEVnVcu8CWKeu4dgm8Gt741nbk-IfsblDzINdpOIHD31Z4GEc0hOctzRLY75e87mx6UWPsh2gVw-cEXgyjaIwhw6IaN18t6qyQWbiSWqLM0RoZhgC0RJC-XkLSkNyWVQJkjUSFuAOhGsMJPmk35C9VdPv62d-nfgT3JrPpeX1-dvFhH-631S-hDukANpffV-45QqylPoyW9ROEwR3F | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayes+Optimality+in+Linear+Discriminant+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hamsici%2C+O.C.&rft.au=Martinez%2C+A.M.&rft.date=2008-04-01&rft.issn=0162-8828&rft.volume=30&rft.issue=4&rft.spage=647&rft.epage=657&rft_id=info:doi/10.1109%2FTPAMI.2007.70717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2007_70717 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |