Bayes Optimality in Linear Discriminant Analysis
We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is ident...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 4; pp. 647 - 657 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Los Alamitos, CA
IEEE
01.04.2008
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 |
| DOI | 10.1109/TPAMI.2007.70717 |
Cover
| Summary: | We present an algorithm that provides the one-dimensional subspace, where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d dimensional solution for any given d by iteratively applying our algorithm to the null space of the (d - l)-dimensional solution. We also show how this result can be used to improve upon the outcomes provided by existing algorithms and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 0162-8828 1939-3539 |
| DOI: | 10.1109/TPAMI.2007.70717 |