Mutated IL-32θ (A94V) inhibits COX2, GM-CSF and CYP1A1 through AhR/ARNT and MAPKs/NF-κB/AP-1 in keratinocytes exposed to PM10

Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter’s (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory r...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 1994 - 13
Main Authors Kim, Jinju, Lim, Chae-Min, Kim, Nahyun, Kim, Hong-Gyum, Hong, Jin-Tae, Yang, Young, Yoon, Do-Young
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-83159-z

Cover

More Information
Summary:Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter’s (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses. This study revealed that one-point mutated IL-32θ (A94V) plays an important role in attenuating skin inflammation. IL-32θ (A94V) inhibited PM-induced COX-2, a pro-inflammatory cytokine GM-CSF and CYP1A1 in PM-exposed human keratinocytes HaCaT cells. IL-32θ (A94V) modulating effects were mediated via down-regulating ERK/p38/NF-κB/ AP-1 and AhR/ARNT signaling pathways. Our study indicates that PM triggers skin inflammation by upregulating COX-2, GM-CSF and CYP1A1 expression. IL-32θ (A94V) suppresses the expressions of COX-2, GM-CSF, and CYP1A1 by blocking the nuclear translocation of NF-κB and AP-1, as well as inhibiting the activation of the AhR/ARNT signaling pathway. Our findings offer valuable insights into developing therapeutic strategies and potential drugs to mitigate PM-induced skin inflammation by inhibiting the ERK/p38/NF-κB/AP-1 and AhR/ARNT signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-83159-z