Joint Task Offloading and Resource Allocation for Intelligent Reflecting Surface-Aided Integrated Sensing and Communication Systems Using Deep Reinforcement Learning Algorithm

This paper investigates an intelligent reflecting surface (IRS)-aided integrated sensing and communication (ISAC) framework to cope with the problem of spectrum scarcity and poor wireless environment. The main goal of the proposed framework in this work is to optimize the overall performance of the...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 24; p. 9896
Main Authors Yang, Liu, Wei, Yifei, Wang, Xiaojun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.12.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23249896

Cover

More Information
Summary:This paper investigates an intelligent reflecting surface (IRS)-aided integrated sensing and communication (ISAC) framework to cope with the problem of spectrum scarcity and poor wireless environment. The main goal of the proposed framework in this work is to optimize the overall performance of the system, including sensing, communication, and computational offloading. We aim to achieve the trade-off between system performance and overhead by optimizing spectrum and computing resource allocation. On the one hand, the joint design of transmit beamforming and phase shift matrices can enhance the radar sensing quality and increase the communication data rate. On the other hand, task offloading and computation resource allocation optimize energy consumption and delay. Due to the coupled and high dimension optimization variables, the optimization problem is non-convex and NP-hard. Meanwhile, given the dynamic wireless channel condition, we formulate the optimization design as a Markov decision process. To tackle this complex optimization problem, we proposed two innovative deep reinforcement learning (DRL)-based schemes. Specifically, a deep deterministic policy gradient (DDPG) method is proposed to address the continuous high-dimensional action space, and the prioritized experience replay is adopted to speed up the convergence process. Then, a twin delayed DDPG algorithm is designed based on this DRL framework. Numerical results confirm the effectiveness of proposed schemes compared with the benchmark methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23249896