Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea

A cardiorespiratory-based automatic sleep staging system for subjects with sleep-disordered breathing is described. A simplified three-state system is used: Wakefulness (W), rapid eye movement (REM) sleep (R), and non-REM sleep (S). The system scores the sleep stages in standard 30-s epochs. A numbe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 53; no. 3; pp. 485 - 496
Main Authors Redmond, S.J., Heneghan, C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2005.869773

Cover

More Information
Summary:A cardiorespiratory-based automatic sleep staging system for subjects with sleep-disordered breathing is described. A simplified three-state system is used: Wakefulness (W), rapid eye movement (REM) sleep (R), and non-REM sleep (S). The system scores the sleep stages in standard 30-s epochs. A number of features associated with the epoch RR-intervals, an inductance plethysmography estimate of rib cage respiratory effort, and an electrocardiogram-derived respiration (EDR) signal were investigated. A subject-specific quadratic discriminant classifier was trained, randomly choosing 20% of the subject's epochs (in appropriate proportions of W, S and R) as the training data. The remaining 80% of epochs were presented to the classifier for testing. An estimated classification accuracy of 79% (Cohen's /spl kappa/ value of 0.56) was achieved. When a similar subject-independent classifier was trained, using epochs from all other subjects as the training data, a drop in classification accuracy to 67% (/spl kappa/=0.32) was observed. The subjects were further broken in groups of low apnoea-hypopnea index (AHI) and high AHI and the experiments repeated. The subject-specific classifier performed better on subjects with low AHI than high AHI; the performance of the subject-independent classifier is not correlated with AHI. For comparison an electroencephalograms (EEGs)-based classifier was trained utilizing several standard EEG features. The subject-specific classifier yielded an accuracy of 87% (/spl kappa/=0.75), and an accuracy of 84% (/spl kappa/=0.68) was obtained for the subject-independent classifier, indicating that EEG features are quite robust across subjects. We conclude that the cardiorespiratory signals provide moderate sleep-staging accuracy, however, features exhibit significant subject dependence which presents potential limits to the use of these signals in a general subject-independent sleep staging system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2005.869773