Bayesian Device-Free Localization and Tracking in a Binary RF Sensor Network

Received-signal-strength-based (RSS-based) device-free localization (DFL) is a promising technique since it is able to localize the person without attaching any electronic device. This technology requires measuring the RSS of all links in the network constituted by several radio frequency (RF) senso...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 5; p. 969
Main Authors Wang, Zhenghuan, Liu, Heng, Xu, Shengxin, Bu, Xiangyuan, An, Jianping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.04.2017
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s17050969

Cover

More Information
Summary:Received-signal-strength-based (RSS-based) device-free localization (DFL) is a promising technique since it is able to localize the person without attaching any electronic device. This technology requires measuring the RSS of all links in the network constituted by several radio frequency (RF) sensors. It is an energy-intensive task, especially when the RF sensors work in traditional work mode, in which the sensors directly send raw RSS measurements of all links to a base station (BS). The traditional work mode is unfavorable for the power constrained RF sensors because the amount of data delivery increases dramatically as the number of sensors grows. In this paper, we propose a binary work mode in which RF sensors send the link states instead of raw RSS measurements to the BS, which remarkably reduces the amount of data delivery. Moreover, we develop two localization methods for the binary work mode which corresponds to stationary and moving target, respectively. The first localization method is formulated based on grid-based maximum likelihood (GML), which is able to achieve global optimum with low online computational complexity. The second localization method, however, uses particle filter (PF) to track the target when constant snapshots of link stats are available. Real experiments in two different kinds of environments were conducted to evaluate the proposed methods. Experimental results show that the localization and tracking performance under the binary work mode is comparable to the those in traditional work mode while the energy efficiency improves considerably.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s17050969