The New Era of Long-Range “Zero-Interception” Ambient Backscattering Systems: 130 m with 130 nA Front-End Consumption
Internet of Things applications based on backscatter radio principles have appeared to address the limitations of high cost and high power consumption. While radio-frequency identification (RFID) sensor nodes are among the most commonly utilized state-of-the-art technologies, their range for passive...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 11; p. 4151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22114151 |
Cover
Summary: | Internet of Things applications based on backscatter radio principles have appeared to address the limitations of high cost and high power consumption. While radio-frequency identification (RFID) sensor nodes are among the most commonly utilized state-of-the-art technologies, their range for passive implementations is typically short and well below 10 m being impractical for “rugged” applications where approaching the tag at such proximity, is not convenient or safe. In this work, we propose a long-range “zero interception” ambient backscatter (LoRAB) communication system relying on low power sensor (tag) deployments. Without employing a dedicated radio transmission, our technology enables the “zero interception” communication of the tags with portable receivers over hundreds of meters. This enables low-cost and low-power communications across a wide range of missions by using chirp spread spectrum (CSS) modulation on ambient FM signals. A laboratory prototype exploiting commercial components (laptops, DAQ, software-defined radios (SDR) platform) have demonstrated the potential by achieving 130 m tag-to-reader distance for a low bit rate of 88 bps with the modulator current consumption at around 103 nA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22114151 |