Detection of differentially expressed genes in spatial transcriptomics data by spatial analysis of spatial transcriptomics: A novel method based on spatial statistics
Spatial transcriptomics (STs) simultaneously obtains the location and amount of gene expression within a tissue section. However, current methods like FindMarkers calculated the differentially expressed genes (DEGs) based on the classical statistics, which should abolish the spatial information. A n...
Saved in:
Published in | Frontiers in neuroscience Vol. 16; p. 1086168 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
29.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2022.1086168 |
Cover
Summary: | Spatial transcriptomics (STs) simultaneously obtains the location and amount of gene expression within a tissue section. However, current methods like FindMarkers calculated the differentially expressed genes (DEGs) based on the classical statistics, which should abolish the spatial information.
A new method named spatial analysis of spatial transcriptomics (saSpatial) was developed for both the location and the amount of gene expression. Then saSpatial was applied to detect DEGs in both inter- and intra-cross sections. DEGs detected by saSpatial were compared with those detected by FindMarkers.
Spatial analysis of spatial transcriptomics was founded on the basis of spatial statistics. It was able to detect DEGs in different regions in the normal brain section. As for the brain with ischemic stroke, saSpatial revealed the DEGs for the ischemic core and penumbra. In addition, saSpatial characterized the genetic heterogeneity in the normal and ischemic cortex. Compared to FindMarkers, a larger number of valuable DEGs were found by saSpatial.
Spatial analysis of spatial transcriptomics was able to effectively detect DEGs in STs data. It was a simple and valuable tool that could help potential researchers to find more valuable genes in the future research. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Yuwen Li, Sichuan University, China Reviewed by: Fang Wang, Nanjing General Hospital of Nanjing Military Command, China; Dezhi Liu, Shanghai University of Traditional Chinese Medicine, China; Xiaomeng Xu, Shanghai Jiao Tong University, China These authors have contributed equally to this work This article was submitted to Translational Neuroscience, a section of the journal Frontiers in Neuroscience |
ISSN: | 1662-453X 1662-4548 1662-453X |
DOI: | 10.3389/fnins.2022.1086168 |