Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm‐cuff experiment
Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance meas...
Saved in:
Published in | Journal of biophotonics Vol. 12; no. 10; pp. e201900064 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.10.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1864-063X 1864-0648 1864-0648 |
DOI | 10.1002/jbio.201900064 |
Cover
Abstract | Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.
The gradient of attenuation of multi‐spectral Near Infrared light as measured at two or more detectors placed on forehead can provide cerebral tissue oxygenation index by accounting for the subject dependent scattering properties of the underlying tissue. |
---|---|
AbstractList | Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely-used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light-attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm-cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely-used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light-attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm-cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter. Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter. Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter. The gradient of attenuation of multi‐spectral Near Infrared light as measured at two or more detectors placed on forehead can provide cerebral tissue oxygenation index by accounting for the subject dependent scattering properties of the underlying tissue. |
Author | Dehghani, Hamid Veesa, Joshua D. |
AuthorAffiliation | 1 School of Computer Science University of Birmingham Birmingham UK |
AuthorAffiliation_xml | – name: 1 School of Computer Science University of Birmingham Birmingham UK |
Author_xml | – sequence: 1 givenname: Joshua D. orcidid: 0000-0002-0763-7755 surname: Veesa fullname: Veesa, Joshua D. email: veesajd@cs.bham.ac.uk organization: University of Birmingham – sequence: 2 givenname: Hamid surname: Dehghani fullname: Dehghani, Hamid organization: University of Birmingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31169976$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkj1vFDEQhlcoiHxAS4ks0dDc4V37vGsKpCRKIChSGpDorNmxN_i0ax_-CFzHTwh_kV-CTxcOiISoPPI877xjzxxWe847U1VPazqvKW1eLnvr5w2tJaVU8AfVQd0JPitht7eL2cf96jDGZSEoW7BH1T6rayFlKw6q7-fZYbLewUicgUCsGwIEo0lcGUzBR_SrNcnRuutyBcnCOK5JMNGPN4XSkIAkTwDRZ5fI4ANJNsZsSERIyYQifEWOictTibHYxJT1moDTBML049st5mEg5uuqpCfj0uPq4QBjNE_uzqPqw_nZ-9O3s8urNxenx5cz5KLjM4Mta3TXtaDbQWrKAAVrBedS9hzRoB6gq1lbC13SgF2v205SQNMjoubsqHq9rbvK_WQ0FusAo1qVLiCslQer_s44-0ld-xvVUrEQVJYCL-4KBP85m5jUZCOacQRnfI6qabhoGK8XTUGf30OXPofy5xtKStExIReFevZnR7tWfk2rAPMtgGUuMZhhh9RUbdZBbdZB7dahCPg9AdoEm3GXF9nx3zK5lX2xo1n_x0S9O7m4-q39CQsj0LA |
CitedBy_id | crossref_primary_10_1109_JSTQE_2024_3512776 crossref_primary_10_1364_BOE_401439 crossref_primary_10_1117_1_JBO_28_7_075002 crossref_primary_10_3390_s21051586 crossref_primary_10_1109_JSEN_2024_3493378 crossref_primary_10_1109_TIM_2023_3279877 crossref_primary_10_1016_j_mehy_2024_111462 crossref_primary_10_1364_BOE_412088 |
Cites_doi | 10.1088/0031-9155/58/14/5007 10.1161/hs1101.098356 10.1002/jbio.201500302 10.1117/1.NPh.4.4.041414 10.1098/rsta.2011.0250 10.1016/j.neuroimage.2013.01.073 10.1364/AO.36.000386 10.3171/jns.2005.103.5.0805 10.1117/12.978011 10.1364/AO.36.000949 10.1117/12.209998 10.1364/AO.48.00D137 10.1073/pnas.0611266104 10.1117/1.2976425 10.1117/12.209997 10.1117/1.2804899 10.1098/rsta.2011.0261 10.1063/1.3694494 10.1093/bjaed/mkw024 10.1097/CCM.0b013e3181a009f8 10.1093/med/9780198739555.003.0017 10.1038/nphoton.2014.107 10.1002/cnm.1162 10.1510/icvts.2009.206367 10.1097/ACO.0b013e3283346d10 10.1016/j.neuroimage.2013.05.004 10.1364/AO.30.004507 10.1118/1.2733803 10.1136/bmj.g104 10.1016/j.neuroimage.2013.05.106 10.1117/12.356862 10.1088/0031-9155/37/12/009 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 5PM |
DOI | 10.1002/jbio.201900064 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Veesa and Dehghani |
EISSN | 1864-0648 |
EndPage | n/a |
ExternalDocumentID | PMC7065609 31169976 10_1002_jbio_201900064 JBIO201900064 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: H2020 Marie Skłodowska‐Curie Actions funderid: 675332 – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 675332 – fundername: ; grantid: 675332 |
GroupedDBID | --- 05W 0R~ 1OC 24P 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 5PM |
ID | FETCH-LOGICAL-c4684-ec732d887ad7f9d03ac63764499b4ccecdfa813716df9dac8bd7890acebcccd43 |
IEDL.DBID | DR2 |
ISSN | 1864-063X 1864-0648 |
IngestDate | Thu Aug 21 14:11:25 EDT 2025 Fri Jul 11 05:26:45 EDT 2025 Fri Jul 25 10:45:13 EDT 2025 Mon Jul 21 05:46:55 EDT 2025 Tue Jul 01 01:54:39 EDT 2025 Thu Apr 24 23:09:45 EDT 2025 Wed Jan 22 16:38:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | tissue optics near-infrared spectroscopy tissue scattering |
Language | English |
License | Attribution 2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4684-ec732d887ad7f9d03ac63764499b4ccecdfa813716df9dac8bd7890acebcccd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information H2020 Marie Skłodowska‐Curie Actions, Grant/Award Number: 675332 |
ORCID | 0000-0002-0763-7755 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201900064 |
PMID | 31169976 |
PQID | 2299683695 |
PQPubID | 1006377 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7065609 proquest_miscellaneous_2246234152 proquest_journals_2299683695 pubmed_primary_31169976 crossref_primary_10_1002_jbio_201900064 crossref_citationtrail_10_1002_jbio_201900064 wiley_primary_10_1002_jbio_201900064_JBIO201900064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
PublicationTitle | Journal of biophotonics |
PublicationTitleAlternate | J Biophotonics |
PublicationYear | 2019 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2012; 83 2007; 104 2017; 4 1991; 30 1995 2008; 13 1992; 37 2014; 85 2016; 16 2007; 12 2007; 34 2009; 48 1999 2011; 369 2010; 23 2014; 348 2013; 58 2005; 103 1997; 36 2008; 25 2009; 9 2016 2014; 8 2009; 37 2016; 9 1989 2001; 32 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 36 start-page: 386 year: 1997 publication-title: Appl. Optics – volume: 32 start-page: 2492 year: 2001 publication-title: Stroke – volume: 85 start-page: 127 issue: Pt 1 year: 2014 publication-title: NeuroImage – year: 1989 – volume: 13 start-page: 054037 year: 2008 publication-title: J. Biomed. Opt. – volume: 85 start-page: 6 issue: Pt 1 year: 2014 publication-title: NeuroImage – volume: 36 start-page: 949 year: 1997 publication-title: Appl. Optics – volume: 103 start-page: 805 year: 2005 publication-title: J. Neurosurg. – year: 2016 – volume: 348 start-page: g104 year: 2014 publication-title: BMJ – volume: 369 start-page: 4407 year: 2011 publication-title: Philos. Transact. A Math. Phys. Eng. Sci. – volume: 37 start-page: 2057 year: 2009 publication-title: Crit. Care Med. – volume: 48 start-page: D137 year: 2009 publication-title: Appl. Optics – volume: 9 start-page: 812 year: 2016 publication-title: J. Biophotonics – volume: 25 start-page: 711 year: 2008 publication-title: Commun. Numer. Methods Eng. – volume: 369 start-page: 4440 year: 2011 publication-title: Philos. Transact. A Math. Phys. Eng. Sci. – volume: 30 start-page: 4507 year: 1991 publication-title: Appl. Optics – volume: 34 start-page: 2085 year: 2007 publication-title: Med. Phys. – volume: 16 start-page: 417 year: 2016 publication-title: BJA Educ. – volume: 104 start-page: 12169 year: 2007 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 85 start-page: 28 year: 2014 publication-title: Neuroimage – volume: 12 start-page: 062104 year: 2007 publication-title: J. Biomed. Opt. – volume: 37 start-page: 2281 year: 1992 publication-title: Phys. Med. Biol. – volume: 58 start-page: 5007 year: 2013 publication-title: Phys. Med. Biol. – year: 1995 – volume: 23 start-page: 89 year: 2010 publication-title: Curr. Opin. Anaesthesiol. – volume: 8 start-page: 448 year: 2014 publication-title: Nat. Photonics – volume: 9 start-page: 318 year: 2009 publication-title: Interact. Cardiovasc. Thoracic Surg. – volume: 83 start-page: 033108 year: 2012 publication-title: Rev. Sci. Instrum. – volume: 4 start-page: 041414 year: 2017 publication-title: Neurophotonics – year: 1999 – ident: e_1_2_10_23_1 doi: 10.1088/0031-9155/58/14/5007 – ident: e_1_2_10_15_1 doi: 10.1161/hs1101.098356 – ident: e_1_2_10_10_1 doi: 10.1002/jbio.201500302 – ident: e_1_2_10_30_1 doi: 10.1117/1.NPh.4.4.041414 – ident: e_1_2_10_7_1 doi: 10.1098/rsta.2011.0250 – ident: e_1_2_10_16_1 doi: 10.1016/j.neuroimage.2013.01.073 – ident: e_1_2_10_31_1 doi: 10.1364/AO.36.000386 – ident: e_1_2_10_2_1 doi: 10.3171/jns.2005.103.5.0805 – ident: e_1_2_10_20_1 doi: 10.1117/12.978011 – ident: e_1_2_10_25_1 doi: 10.1364/AO.36.000949 – ident: e_1_2_10_24_1 doi: 10.1117/12.209998 – ident: e_1_2_10_29_1 doi: 10.1364/AO.48.00D137 – ident: e_1_2_10_17_1 doi: 10.1073/pnas.0611266104 – ident: e_1_2_10_28_1 doi: 10.1117/1.2976425 – ident: e_1_2_10_19_1 doi: 10.1117/12.209997 – ident: e_1_2_10_12_1 doi: 10.1117/1.2804899 – ident: e_1_2_10_33_1 doi: 10.1098/rsta.2011.0261 – ident: e_1_2_10_22_1 doi: 10.1063/1.3694494 – ident: e_1_2_10_32_1 doi: 10.1093/bjaed/mkw024 – ident: e_1_2_10_4_1 doi: 10.1097/CCM.0b013e3181a009f8 – ident: e_1_2_10_5_1 doi: 10.1093/med/9780198739555.003.0017 – ident: e_1_2_10_11_1 doi: 10.1038/nphoton.2014.107 – ident: e_1_2_10_9_1 doi: 10.1002/cnm.1162 – ident: e_1_2_10_14_1 doi: 10.1510/icvts.2009.206367 – ident: e_1_2_10_13_1 doi: 10.1097/ACO.0b013e3283346d10 – ident: e_1_2_10_8_1 doi: 10.1016/j.neuroimage.2013.05.004 – ident: e_1_2_10_26_1 doi: 10.1364/AO.30.004507 – ident: e_1_2_10_27_1 doi: 10.1118/1.2733803 – ident: e_1_2_10_3_1 doi: 10.1136/bmj.g104 – ident: e_1_2_10_6_1 doi: 10.1016/j.neuroimage.2013.05.106 – ident: e_1_2_10_18_1 doi: 10.1117/12.356862 – ident: e_1_2_10_21_1 doi: 10.1088/0031-9155/37/12/009 |
SSID | ssj0060353 |
Score | 2.2615967 |
Snippet | Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional... Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e201900064 |
SubjectTerms | Algorithms Brain - metabolism Chromophores Computer simulation Continuous radiation Diffusion Distance measurement Full Hemodynamics Humans Infrared spectroscopy Light intensity Luminous intensity Models, Biological Near infrared radiation near‐infrared spectroscopy Optical Phenomena Oxygen - metabolism Oxygenation Parameters Scattering Spectroscopy, Near-Infrared Spectrum analysis tissue optics tissue scattering Tissues Wave attenuation Wavelengths |
Title | Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm‐cuff experiment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201900064 https://www.ncbi.nlm.nih.gov/pubmed/31169976 https://www.proquest.com/docview/2299683695 https://www.proquest.com/docview/2246234152 https://pubmed.ncbi.nlm.nih.gov/PMC7065609 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzhQ3gRKZSQkTmmT2HEcbuWxKpV4CFFpb5E9dkohTardBKmc-AnwF_kljO3ddJcKIcEticdK7HzjmbHHnwl5XGdGplZgmJpbiLmsIdZGQpzXGTj7qFOfVfn6jdg_5AfTfLqyiz_wQ4wTbk4z_HjtFFzp-e45aegnfew276WlN6s4CKdMOPL8F-9H_iiRME9DmUrBY7TF0yVrY5Ltrldft0oXXM2LGZOrnqw3RZNNopaNCBkon3eGXu_A19_4Hf-nldfJtYWfSvcCsG6QS7a9Sa6usBfeIj8maBPDVCJtUWEognXm8tmp377paDK70zPqMuuP8BFCQDXNGcX4vmu-oJRLTqV9R1U4sIKi-0x7jwM6B0_7iRWf0j3aDmFZqaGeDJeq1lA1O_n57TsMdU3PDym4TQ4nLz88348XJzzEwIXksYWCIVhkoUxRlyZhCgSOeBzDMM0BLJhayZRhTGewWIHUxm3cVWA1ABjO7pCNtmvtPUK1s6zM1FmiBK-VQrFS8Ty3TGcFaBuRePmHK1jQn7tTOJoqEDdnlevqauzqiDwZ5U8D8ccfJbeWgKkWA8C8ytDMC8lEmUfk0ViMquvWY1Rru8HJcHQ-nQcVkbsBX-OrWIpKgq5iRIo15I0CjhZ8vaQ9_ujpwd3CtUjKiGQeWH_5-urg2au34939f6n0gFxx1yHFcYts9LPBPkRXrdfb5HLG3217pfwFjCw-CQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELWgLIAF70eggJGQWKXNw3ESdgVxdVvaIqFW6i6yxw4UQlLd3iCVFZ8Av8iXMGPfpL1UCAmWicdKnJzxHNvjY8ae1YkpYitxmJpZCEVRQ6hNAWFWJ0DxUccuq3JnV073xdZBNmQT0l4Yrw8xTriRZ7j-mhycJqTXT1VDP-pD2r0Xly6uXmSX3CId8aJ3o4KUjFInRBkXUoQYjQ8G3cYoWV-uvxyXzpHN8zmTZ7msC0aT60wPzfA5KJ_W-rleg6-_KTz-VztvsGsLqso3PLZusgu2vcWunhEwvM1-TDAs-tlE3qLPcMTrjFLaudvBSUqZ3dEJp-T693gLUaCa5oTjEL9rvqAV5afyeceVP7OCI4PmcwcFfgxO-RMrvuAbvO39ylLDnR4uV63havb557fv0Nc1Pz2n4A7bn7zeezUNF4c8hCBkIUILeYp4KXJl8ro0UapAYqcncCSmBYAFU6siTnFYZ7BYQaEN7d1VYDUAGJHeZStt19r7jGsKrqmpk0hJUSuFZqUSWWZTneSgbcDC4RdXsFBAp4M4msprNycVfepq_NQBez7aH3ntjz9arg6IqRZ9wHGVYKSXRSrLLGBPx2L0XlqSUa3terIRyD-JRAXsngfY-Kg0Rj9BthiwfAl6owEpgy-XtIcfnEI4rV3LqAxY4pD1l7evtl5uvh2vHvxLpSfs8nRvZ7va3tx985Bdofs-43GVrcxnvX2EzG2uHzvf_AXEMUFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9QwDLdgSAgeEP8pDAgSEk_Vrm2atryNP6dtwNgDk-6tSpwEhkp7ut0h7Y2PAF-RT4Kd3nV3mhASj00ctart2E7snwGe-9SWiVMUpuYOY1l6jI0tMc59imwfTRKyKj8cqr1jeTDJJ2tV_D0-xHDgxpoR9mtW8Kn1O-egoV_NCRfvJVUwq5fhiiThYxlP5dFqL1ajLOBQJqWSMRnjyQq2cZTubK7fNEsXfM2LKZPrrmywReObcGPpRIrdnuu34JJrb8P1NWjBO_BrTAarP-cTLUmzIEmacbK5CLWVjGHZTc8Ep71_piHij26aM0HBd9d8JyrOHBXzTui-m4Qg31bMA5PEKQZMTlr4UuyKdtHf-TQiINUK3VqhZ99-__iJC-_FeQeBu3A8fvvp9V68bL8Qo1SljB0WGXGyLLQtfGVHmUZF25GkGMlIRIfW6zLJKOCyNK2xNJarajU6g4hWZvdgq-1a9wCEYbOXWZ-OtJJeayKrtMxzl5m0QOMiiFd_v8YlNjm3yGjqHlU5rZlb9cCtCF4M9NMeleOvlNsrZtZL7TytU7LBqsxUlUfwbJgmveLLEt26bsE0kjxDdm8iuN_zfnhVlpAEkx8XQbEhFQMBY3ZvzrQnXwJ2N98qq1EVQRrk5x9fXx-82v84PD38n0VP4erRm3H9fv_w3SO4xsN9KuI2bM1nC_eYXKq5eRK05g9TCh6f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+near+infrared+spectroscopy+using+spatially+resolved+data+to+account+for+tissue+scattering%3A+A+numerical+study+and+arm%E2%80%90cuff+experiment&rft.jtitle=Journal+of+biophotonics&rft.au=Veesa%2C+Joshua+D.&rft.au=Dehghani%2C+Hamid&rft.date=2019-10-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=12&rft.issue=10&rft_id=info:doi/10.1002%2Fjbio.201900064&rft_id=info%3Apmid%2F31169976&rft.externalDocID=PMC7065609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |