Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm‐cuff experiment

Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance meas...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 12; no. 10; pp. e201900064 - n/a
Main Authors Veesa, Joshua D., Dehghani, Hamid
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.10.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1864-063X
1864-0648
1864-0648
DOI10.1002/jbio.201900064

Cover

Abstract Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter. The gradient of attenuation of multi‐spectral Near Infrared light as measured at two or more detectors placed on forehead can provide cerebral tissue oxygenation index by accounting for the subject dependent scattering properties of the underlying tissue.
AbstractList Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely-used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light-attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm-cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely-used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light-attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm-cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.
Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.
Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter. The gradient of attenuation of multi‐spectral Near Infrared light as measured at two or more detectors placed on forehead can provide cerebral tissue oxygenation index by accounting for the subject dependent scattering properties of the underlying tissue.
Author Dehghani, Hamid
Veesa, Joshua D.
AuthorAffiliation 1 School of Computer Science University of Birmingham Birmingham UK
AuthorAffiliation_xml – name: 1 School of Computer Science University of Birmingham Birmingham UK
Author_xml – sequence: 1
  givenname: Joshua D.
  orcidid: 0000-0002-0763-7755
  surname: Veesa
  fullname: Veesa, Joshua D.
  email: veesajd@cs.bham.ac.uk
  organization: University of Birmingham
– sequence: 2
  givenname: Hamid
  surname: Dehghani
  fullname: Dehghani, Hamid
  organization: University of Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31169976$$D View this record in MEDLINE/PubMed
BookMark eNqFkj1vFDEQhlcoiHxAS4ks0dDc4V37vGsKpCRKIChSGpDorNmxN_i0ax_-CFzHTwh_kV-CTxcOiISoPPI877xjzxxWe847U1VPazqvKW1eLnvr5w2tJaVU8AfVQd0JPitht7eL2cf96jDGZSEoW7BH1T6rayFlKw6q7-fZYbLewUicgUCsGwIEo0lcGUzBR_SrNcnRuutyBcnCOK5JMNGPN4XSkIAkTwDRZ5fI4ANJNsZsSERIyYQifEWOictTibHYxJT1moDTBML049st5mEg5uuqpCfj0uPq4QBjNE_uzqPqw_nZ-9O3s8urNxenx5cz5KLjM4Mta3TXtaDbQWrKAAVrBedS9hzRoB6gq1lbC13SgF2v205SQNMjoubsqHq9rbvK_WQ0FusAo1qVLiCslQer_s44-0ld-xvVUrEQVJYCL-4KBP85m5jUZCOacQRnfI6qabhoGK8XTUGf30OXPofy5xtKStExIReFevZnR7tWfk2rAPMtgGUuMZhhh9RUbdZBbdZB7dahCPg9AdoEm3GXF9nx3zK5lX2xo1n_x0S9O7m4-q39CQsj0LA
CitedBy_id crossref_primary_10_1109_JSTQE_2024_3512776
crossref_primary_10_1364_BOE_401439
crossref_primary_10_1117_1_JBO_28_7_075002
crossref_primary_10_3390_s21051586
crossref_primary_10_1109_JSEN_2024_3493378
crossref_primary_10_1109_TIM_2023_3279877
crossref_primary_10_1016_j_mehy_2024_111462
crossref_primary_10_1364_BOE_412088
Cites_doi 10.1088/0031-9155/58/14/5007
10.1161/hs1101.098356
10.1002/jbio.201500302
10.1117/1.NPh.4.4.041414
10.1098/rsta.2011.0250
10.1016/j.neuroimage.2013.01.073
10.1364/AO.36.000386
10.3171/jns.2005.103.5.0805
10.1117/12.978011
10.1364/AO.36.000949
10.1117/12.209998
10.1364/AO.48.00D137
10.1073/pnas.0611266104
10.1117/1.2976425
10.1117/12.209997
10.1117/1.2804899
10.1098/rsta.2011.0261
10.1063/1.3694494
10.1093/bjaed/mkw024
10.1097/CCM.0b013e3181a009f8
10.1093/med/9780198739555.003.0017
10.1038/nphoton.2014.107
10.1002/cnm.1162
10.1510/icvts.2009.206367
10.1097/ACO.0b013e3283346d10
10.1016/j.neuroimage.2013.05.004
10.1364/AO.30.004507
10.1118/1.2733803
10.1136/bmj.g104
10.1016/j.neuroimage.2013.05.106
10.1117/12.356862
10.1088/0031-9155/37/12/009
ContentType Journal Article
Copyright 2019 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
5PM
DOI 10.1002/jbio.201900064
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Veesa and Dehghani
EISSN 1864-0648
EndPage n/a
ExternalDocumentID PMC7065609
31169976
10_1002_jbio_201900064
JBIO201900064
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 Marie Skłodowska‐Curie Actions
  funderid: 675332
– fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 675332
– fundername: ;
  grantid: 675332
GroupedDBID ---
05W
0R~
1OC
24P
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
5PM
ID FETCH-LOGICAL-c4684-ec732d887ad7f9d03ac63764499b4ccecdfa813716df9dac8bd7890acebcccd43
IEDL.DBID DR2
ISSN 1864-063X
1864-0648
IngestDate Thu Aug 21 14:11:25 EDT 2025
Fri Jul 11 05:26:45 EDT 2025
Fri Jul 25 10:45:13 EDT 2025
Mon Jul 21 05:46:55 EDT 2025
Tue Jul 01 01:54:39 EDT 2025
Thu Apr 24 23:09:45 EDT 2025
Wed Jan 22 16:38:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords tissue optics
near-infrared spectroscopy
tissue scattering
Language English
License Attribution
2019 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4684-ec732d887ad7f9d03ac63764499b4ccecdfa813716df9dac8bd7890acebcccd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information H2020 Marie Skłodowska‐Curie Actions, Grant/Award Number: 675332
ORCID 0000-0002-0763-7755
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201900064
PMID 31169976
PQID 2299683695
PQPubID 1006377
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7065609
proquest_miscellaneous_2246234152
proquest_journals_2299683695
pubmed_primary_31169976
crossref_primary_10_1002_jbio_201900064
crossref_citationtrail_10_1002_jbio_201900064
wiley_primary_10_1002_jbio_201900064_JBIO201900064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2019
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2012; 83
2007; 104
2017; 4
1991; 30
1995
2008; 13
1992; 37
2014; 85
2016; 16
2007; 12
2007; 34
2009; 48
1999
2011; 369
2010; 23
2014; 348
2013; 58
2005; 103
1997; 36
2008; 25
2009; 9
2016
2014; 8
2009; 37
2016; 9
1989
2001; 32
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 36
  start-page: 386
  year: 1997
  publication-title: Appl. Optics
– volume: 32
  start-page: 2492
  year: 2001
  publication-title: Stroke
– volume: 85
  start-page: 127
  issue: Pt 1
  year: 2014
  publication-title: NeuroImage
– year: 1989
– volume: 13
  start-page: 054037
  year: 2008
  publication-title: J. Biomed. Opt.
– volume: 85
  start-page: 6
  issue: Pt 1
  year: 2014
  publication-title: NeuroImage
– volume: 36
  start-page: 949
  year: 1997
  publication-title: Appl. Optics
– volume: 103
  start-page: 805
  year: 2005
  publication-title: J. Neurosurg.
– year: 2016
– volume: 348
  start-page: g104
  year: 2014
  publication-title: BMJ
– volume: 369
  start-page: 4407
  year: 2011
  publication-title: Philos. Transact. A Math. Phys. Eng. Sci.
– volume: 37
  start-page: 2057
  year: 2009
  publication-title: Crit. Care Med.
– volume: 48
  start-page: D137
  year: 2009
  publication-title: Appl. Optics
– volume: 9
  start-page: 812
  year: 2016
  publication-title: J. Biophotonics
– volume: 25
  start-page: 711
  year: 2008
  publication-title: Commun. Numer. Methods Eng.
– volume: 369
  start-page: 4440
  year: 2011
  publication-title: Philos. Transact. A Math. Phys. Eng. Sci.
– volume: 30
  start-page: 4507
  year: 1991
  publication-title: Appl. Optics
– volume: 34
  start-page: 2085
  year: 2007
  publication-title: Med. Phys.
– volume: 16
  start-page: 417
  year: 2016
  publication-title: BJA Educ.
– volume: 104
  start-page: 12169
  year: 2007
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 85
  start-page: 28
  year: 2014
  publication-title: Neuroimage
– volume: 12
  start-page: 062104
  year: 2007
  publication-title: J. Biomed. Opt.
– volume: 37
  start-page: 2281
  year: 1992
  publication-title: Phys. Med. Biol.
– volume: 58
  start-page: 5007
  year: 2013
  publication-title: Phys. Med. Biol.
– year: 1995
– volume: 23
  start-page: 89
  year: 2010
  publication-title: Curr. Opin. Anaesthesiol.
– volume: 8
  start-page: 448
  year: 2014
  publication-title: Nat. Photonics
– volume: 9
  start-page: 318
  year: 2009
  publication-title: Interact. Cardiovasc. Thoracic Surg.
– volume: 83
  start-page: 033108
  year: 2012
  publication-title: Rev. Sci. Instrum.
– volume: 4
  start-page: 041414
  year: 2017
  publication-title: Neurophotonics
– year: 1999
– ident: e_1_2_10_23_1
  doi: 10.1088/0031-9155/58/14/5007
– ident: e_1_2_10_15_1
  doi: 10.1161/hs1101.098356
– ident: e_1_2_10_10_1
  doi: 10.1002/jbio.201500302
– ident: e_1_2_10_30_1
  doi: 10.1117/1.NPh.4.4.041414
– ident: e_1_2_10_7_1
  doi: 10.1098/rsta.2011.0250
– ident: e_1_2_10_16_1
  doi: 10.1016/j.neuroimage.2013.01.073
– ident: e_1_2_10_31_1
  doi: 10.1364/AO.36.000386
– ident: e_1_2_10_2_1
  doi: 10.3171/jns.2005.103.5.0805
– ident: e_1_2_10_20_1
  doi: 10.1117/12.978011
– ident: e_1_2_10_25_1
  doi: 10.1364/AO.36.000949
– ident: e_1_2_10_24_1
  doi: 10.1117/12.209998
– ident: e_1_2_10_29_1
  doi: 10.1364/AO.48.00D137
– ident: e_1_2_10_17_1
  doi: 10.1073/pnas.0611266104
– ident: e_1_2_10_28_1
  doi: 10.1117/1.2976425
– ident: e_1_2_10_19_1
  doi: 10.1117/12.209997
– ident: e_1_2_10_12_1
  doi: 10.1117/1.2804899
– ident: e_1_2_10_33_1
  doi: 10.1098/rsta.2011.0261
– ident: e_1_2_10_22_1
  doi: 10.1063/1.3694494
– ident: e_1_2_10_32_1
  doi: 10.1093/bjaed/mkw024
– ident: e_1_2_10_4_1
  doi: 10.1097/CCM.0b013e3181a009f8
– ident: e_1_2_10_5_1
  doi: 10.1093/med/9780198739555.003.0017
– ident: e_1_2_10_11_1
  doi: 10.1038/nphoton.2014.107
– ident: e_1_2_10_9_1
  doi: 10.1002/cnm.1162
– ident: e_1_2_10_14_1
  doi: 10.1510/icvts.2009.206367
– ident: e_1_2_10_13_1
  doi: 10.1097/ACO.0b013e3283346d10
– ident: e_1_2_10_8_1
  doi: 10.1016/j.neuroimage.2013.05.004
– ident: e_1_2_10_26_1
  doi: 10.1364/AO.30.004507
– ident: e_1_2_10_27_1
  doi: 10.1118/1.2733803
– ident: e_1_2_10_3_1
  doi: 10.1136/bmj.g104
– ident: e_1_2_10_6_1
  doi: 10.1016/j.neuroimage.2013.05.106
– ident: e_1_2_10_18_1
  doi: 10.1117/12.356862
– ident: e_1_2_10_21_1
  doi: 10.1088/0031-9155/37/12/009
SSID ssj0060353
Score 2.2615967
Snippet Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional...
Functional Near-Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e201900064
SubjectTerms Algorithms
Brain - metabolism
Chromophores
Computer simulation
Continuous radiation
Diffusion
Distance measurement
Full
Hemodynamics
Humans
Infrared spectroscopy
Light intensity
Luminous intensity
Models, Biological
Near infrared radiation
near‐infrared spectroscopy
Optical Phenomena
Oxygen - metabolism
Oxygenation
Parameters
Scattering
Spectroscopy, Near-Infrared
Spectrum analysis
tissue optics
tissue scattering
Tissues
Wave attenuation
Wavelengths
Title Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm‐cuff experiment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201900064
https://www.ncbi.nlm.nih.gov/pubmed/31169976
https://www.proquest.com/docview/2299683695
https://www.proquest.com/docview/2246234152
https://pubmed.ncbi.nlm.nih.gov/PMC7065609
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJzhQ3gRKZSQkTmmT2HEcbuWxKpV4CFFpb5E9dkohTardBKmc-AnwF_kljO3ddJcKIcEticdK7HzjmbHHnwl5XGdGplZgmJpbiLmsIdZGQpzXGTj7qFOfVfn6jdg_5AfTfLqyiz_wQ4wTbk4z_HjtFFzp-e45aegnfew276WlN6s4CKdMOPL8F-9H_iiRME9DmUrBY7TF0yVrY5Ltrldft0oXXM2LGZOrnqw3RZNNopaNCBkon3eGXu_A19_4Hf-nldfJtYWfSvcCsG6QS7a9Sa6usBfeIj8maBPDVCJtUWEognXm8tmp377paDK70zPqMuuP8BFCQDXNGcX4vmu-oJRLTqV9R1U4sIKi-0x7jwM6B0_7iRWf0j3aDmFZqaGeDJeq1lA1O_n57TsMdU3PDym4TQ4nLz88348XJzzEwIXksYWCIVhkoUxRlyZhCgSOeBzDMM0BLJhayZRhTGewWIHUxm3cVWA1ABjO7pCNtmvtPUK1s6zM1FmiBK-VQrFS8Ty3TGcFaBuRePmHK1jQn7tTOJoqEDdnlevqauzqiDwZ5U8D8ccfJbeWgKkWA8C8ytDMC8lEmUfk0ViMquvWY1Rru8HJcHQ-nQcVkbsBX-OrWIpKgq5iRIo15I0CjhZ8vaQ9_ujpwd3CtUjKiGQeWH_5-urg2au34939f6n0gFxx1yHFcYts9LPBPkRXrdfb5HLG3217pfwFjCw-CQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtUwELWgLIAF70eggJGQWKXNw3ESdgVxdVvaIqFW6i6yxw4UQlLd3iCVFZ8Av8iXMGPfpL1UCAmWicdKnJzxHNvjY8ae1YkpYitxmJpZCEVRQ6hNAWFWJ0DxUccuq3JnV073xdZBNmQT0l4Yrw8xTriRZ7j-mhycJqTXT1VDP-pD2r0Xly6uXmSX3CId8aJ3o4KUjFInRBkXUoQYjQ8G3cYoWV-uvxyXzpHN8zmTZ7msC0aT60wPzfA5KJ_W-rleg6-_KTz-VztvsGsLqso3PLZusgu2vcWunhEwvM1-TDAs-tlE3qLPcMTrjFLaudvBSUqZ3dEJp-T693gLUaCa5oTjEL9rvqAV5afyeceVP7OCI4PmcwcFfgxO-RMrvuAbvO39ylLDnR4uV63havb557fv0Nc1Pz2n4A7bn7zeezUNF4c8hCBkIUILeYp4KXJl8ro0UapAYqcncCSmBYAFU6siTnFYZ7BYQaEN7d1VYDUAGJHeZStt19r7jGsKrqmpk0hJUSuFZqUSWWZTneSgbcDC4RdXsFBAp4M4msprNycVfepq_NQBez7aH3ntjz9arg6IqRZ9wHGVYKSXRSrLLGBPx2L0XlqSUa3terIRyD-JRAXsngfY-Kg0Rj9BthiwfAl6owEpgy-XtIcfnEI4rV3LqAxY4pD1l7evtl5uvh2vHvxLpSfs8nRvZ7va3tx985Bdofs-43GVrcxnvX2EzG2uHzvf_AXEMUFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9QwDLdgSAgeEP8pDAgSEk_Vrm2atryNP6dtwNgDk-6tSpwEhkp7ut0h7Y2PAF-RT4Kd3nV3mhASj00ctart2E7snwGe-9SWiVMUpuYOY1l6jI0tMc59imwfTRKyKj8cqr1jeTDJJ2tV_D0-xHDgxpoR9mtW8Kn1O-egoV_NCRfvJVUwq5fhiiThYxlP5dFqL1ajLOBQJqWSMRnjyQq2cZTubK7fNEsXfM2LKZPrrmywReObcGPpRIrdnuu34JJrb8P1NWjBO_BrTAarP-cTLUmzIEmacbK5CLWVjGHZTc8Ep71_piHij26aM0HBd9d8JyrOHBXzTui-m4Qg31bMA5PEKQZMTlr4UuyKdtHf-TQiINUK3VqhZ99-__iJC-_FeQeBu3A8fvvp9V68bL8Qo1SljB0WGXGyLLQtfGVHmUZF25GkGMlIRIfW6zLJKOCyNK2xNJarajU6g4hWZvdgq-1a9wCEYbOXWZ-OtJJeayKrtMxzl5m0QOMiiFd_v8YlNjm3yGjqHlU5rZlb9cCtCF4M9NMeleOvlNsrZtZL7TytU7LBqsxUlUfwbJgmveLLEt26bsE0kjxDdm8iuN_zfnhVlpAEkx8XQbEhFQMBY3ZvzrQnXwJ2N98qq1EVQRrk5x9fXx-82v84PD38n0VP4erRm3H9fv_w3SO4xsN9KuI2bM1nC_eYXKq5eRK05g9TCh6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+near+infrared+spectroscopy+using+spatially+resolved+data+to+account+for+tissue+scattering%3A+A+numerical+study+and+arm%E2%80%90cuff+experiment&rft.jtitle=Journal+of+biophotonics&rft.au=Veesa%2C+Joshua+D.&rft.au=Dehghani%2C+Hamid&rft.date=2019-10-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=12&rft.issue=10&rft_id=info:doi/10.1002%2Fjbio.201900064&rft_id=info%3Apmid%2F31169976&rft.externalDocID=PMC7065609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon