Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm‐cuff experiment
Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance meas...
Saved in:
Published in | Journal of biophotonics Vol. 12; no. 10; pp. e201900064 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.10.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1864-063X 1864-0648 1864-0648 |
DOI | 10.1002/jbio.201900064 |
Cover
Summary: | Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.
The gradient of attenuation of multi‐spectral Near Infrared light as measured at two or more detectors placed on forehead can provide cerebral tissue oxygenation index by accounting for the subject dependent scattering properties of the underlying tissue. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information H2020 Marie Skłodowska‐Curie Actions, Grant/Award Number: 675332 |
ISSN: | 1864-063X 1864-0648 1864-0648 |
DOI: | 10.1002/jbio.201900064 |