Polymorphism in the 5′-Flanking Region of Human Glutamate-Cysteine Ligase Modifier Subunit Gene Is Associated With Myocardial Infarction
Background — Human glutamate-cysteine ligase (GCL) is a rate-limiting enzyme for the synthesis of glutathione that plays a crucial role in antioxidant defense mechanisms in most mammalian cells, including vascular cells. Oxidants transcriptionally upregulate GCL genes for glutathione synthesis, prov...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 105; no. 25; pp. 2968 - 2973 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
25.06.2002
American Heart Association, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 1524-4539 |
DOI | 10.1161/01.CIR.0000019739.66514.1E |
Cover
Summary: | Background
—
Human glutamate-cysteine ligase (GCL) is a rate-limiting enzyme for the synthesis of glutathione that plays a crucial role in antioxidant defense mechanisms in most mammalian cells, including vascular cells. Oxidants transcriptionally upregulate GCL genes for glutathione synthesis, providing a protective mechanism against oxidative stress-induced cellular dysfunction. This study examined the hypothesis that variation in the GCL genes may be associated with coronary artery disease in which oxidative stress plays a pathogenetic role.
Methods and Results
—
We searched for the common variants in the 5′-flanking region of the GCL modifier subunit (GCLM) gene in patients with myocardial infarction (MI). We found a polymorphism (−588C/T) in which the T allele showed lower promoter activity (40% to 50% of C allele) in response to oxidants in the luciferase reporter gene assay. Allele frequencies were determined by polymerase chain reaction-based analysis of restriction fragment length polymorphism in 429 patients with MI and 428 control subjects (as defined by angiography) in Kumamoto Prefecture, Japan. The frequency of the T polymorphism was significantly higher in the MI group than in the control group (CT and TT genotypes: 31.5% in MI group versus 19.2% in control group;
P
<0.001). In multiple logistic regression analysis, the T polymorphism was a risk factor for MI independent of traditional coronary artery disease risk factors (odds ratio, 1.98; 95% confidence interval, 1.38 to 2.83;
P
<0.001).
Conclusions
—
These findings suggest that the −588T polymorphism of the GCLM gene may suppress GCLM gene induction in response to oxidants and that it is a genetic risk factor for MI. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0009-7322 1524-4539 1524-4539 |
DOI: | 10.1161/01.CIR.0000019739.66514.1E |