The proton sponge hypothesis: Fable or fact?
In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for ef...
Saved in:
Published in | European journal of pharmaceutics and biopharmaceutics Vol. 129; pp. 184 - 190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0939-6411 1873-3441 1873-3441 |
DOI | 10.1016/j.ejpb.2018.05.034 |
Cover
Abstract | In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late ‘90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape. |
---|---|
AbstractList | In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape. In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape. |
Author | Braeckmans, Kevin De Smedt, Stefaan C. Vermeulen, Lotte M.P. Remaut, Katrien |
Author_xml | – sequence: 1 givenname: Lotte M.P. surname: Vermeulen fullname: Vermeulen, Lotte M.P. organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium – sequence: 2 givenname: Stefaan C. surname: De Smedt fullname: De Smedt, Stefaan C. organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium – sequence: 3 givenname: Katrien orcidid: 0000-0002-8653-2598 surname: Remaut fullname: Remaut, Katrien organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium – sequence: 4 givenname: Kevin surname: Braeckmans fullname: Braeckmans, Kevin email: Kevin.Braeckmans@UGent.be organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29859281$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLAzEUhYMotlX_gAuZpQtnzGseEUGk-IKCG12HPG5tynQyJqnQf--UthsXru7mfId7vgk67nwHCF0SXBBMqttlActeFxSTpsBlgRk_QmPS1CxnnJNjNMaCibzihIzQJMYlxpjXZXOKRlQ0paANGaObjwVkffDJd1nsffcF2WLT-7SA6OJd9qx0C5kP2VyZ9HCOTuaqjXCxv2fo8_npY_qaz95f3qaPs9zwqkq55gYLQjSjbE5tCRYaYxkzQnOwlgkhtNbKUmaIMgoaQnldVwKbstS8Fpadoetd7_DY9xpikisXDbSt6sCvo6SYi7KqhpVD9GofXesVWNkHt1JhIw8Lh0CzC5jgYwwwl8YllZzvUlCulQTLrUy5lFuZcitT4lIOMgeU_kEP7f9C9zsIBkE_DoKMxkFnwLoAJknr3X_4L-s2jCY |
CitedBy_id | crossref_primary_10_1016_j_peptides_2021_170542 crossref_primary_10_1021_acsomega_9b00066 crossref_primary_10_1039_D2RA00713D crossref_primary_10_1021_acsami_3c05335 crossref_primary_10_3390_pharmaceutics13101549 crossref_primary_10_1039_D2CS00106C crossref_primary_10_1021_acsnano_3c06225 crossref_primary_10_1016_j_jconrel_2023_02_019 crossref_primary_10_1016_j_jconrel_2024_01_067 crossref_primary_10_1002_chem_202100832 crossref_primary_10_1016_j_actbio_2022_05_036 crossref_primary_10_1016_j_jconrel_2023_09_001 crossref_primary_10_3390_ijms252312787 crossref_primary_10_1016_j_msec_2021_111875 crossref_primary_10_1021_acsomega_0c03367 crossref_primary_10_1002_pep2_24168 crossref_primary_10_1016_j_colcom_2021_100449 crossref_primary_10_1016_j_colsurfb_2020_110804 crossref_primary_10_1186_s12951_022_01336_6 crossref_primary_10_1016_j_mrrev_2023_108468 crossref_primary_10_1134_S0022093021060132 crossref_primary_10_1016_j_biomaterials_2021_121010 crossref_primary_10_1002_slct_202301183 crossref_primary_10_1002_app_49400 crossref_primary_10_1016_j_pharmthera_2021_107871 crossref_primary_10_1007_s40259_021_00500_y crossref_primary_10_1186_s12951_024_03004_3 crossref_primary_10_1002_gch2_202400217 crossref_primary_10_1007_s10238_022_00925_x crossref_primary_10_3390_pharmaceutics16020275 crossref_primary_10_1007_s40097_022_00487_0 crossref_primary_10_1002_adhm_202302495 crossref_primary_10_3390_ijms22020831 crossref_primary_10_1088_1742_6596_2608_1_012026 crossref_primary_10_1016_j_ijpharm_2024_124007 crossref_primary_10_1039_D0BM01367F crossref_primary_10_3390_nano10091816 crossref_primary_10_1016_j_nantod_2023_101887 crossref_primary_10_3390_pharmaceutics16060779 crossref_primary_10_1016_j_colsurfb_2022_112899 crossref_primary_10_1016_j_ijbiomac_2023_124673 crossref_primary_10_1073_pnas_2301067120 crossref_primary_10_3390_cancers13112631 crossref_primary_10_1016_j_actbio_2020_09_027 crossref_primary_10_1016_j_ijpharm_2022_121509 crossref_primary_10_3390_pharmaceutics14112302 crossref_primary_10_1016_j_heliyon_2024_e36057 crossref_primary_10_1016_j_intimp_2024_112730 crossref_primary_10_3390_pharmaceutics14112427 crossref_primary_10_3390_pharmaceutics15041130 crossref_primary_10_1007_s13346_024_01563_4 crossref_primary_10_1002_adma_202419538 crossref_primary_10_1021_acsnano_1c05099 crossref_primary_10_1039_C8BM01643G crossref_primary_10_1039_C9BM01112A crossref_primary_10_1016_j_ijpharm_2024_125109 crossref_primary_10_1039_D4PY00234B crossref_primary_10_1002_advs_202309748 crossref_primary_10_1016_j_ijpharm_2024_125107 crossref_primary_10_1016_j_addr_2023_114773 crossref_primary_10_1021_jacsau_3c00126 crossref_primary_10_1021_acs_nanolett_4c04291 crossref_primary_10_1016_j_jddst_2021_103079 crossref_primary_10_3390_ma15010179 crossref_primary_10_1016_j_jconrel_2022_03_020 crossref_primary_10_1002_mabi_202300362 crossref_primary_10_1016_j_jconrel_2022_08_005 crossref_primary_10_1021_acs_biomac_0c01283 crossref_primary_10_1016_j_jconrel_2021_03_027 crossref_primary_10_1021_acsomega_8b02757 crossref_primary_10_1039_D1NJ02115J crossref_primary_10_3390_pharmaceutics15071999 crossref_primary_10_1021_acs_bioconjchem_8b00732 crossref_primary_10_3390_ijms24010840 crossref_primary_10_1016_j_nano_2022_102626 crossref_primary_10_1039_D1NR04460E crossref_primary_10_1039_D4BM01661K crossref_primary_10_1021_acsnano_2c06337 crossref_primary_10_3390_pharmaceutics16070868 crossref_primary_10_1016_j_colcom_2021_100406 crossref_primary_10_1016_j_cbpa_2024_102499 crossref_primary_10_1016_j_ijpharm_2023_123727 crossref_primary_10_1002_adtp_202300005 crossref_primary_10_1098_rsob_210194 crossref_primary_10_1039_D2BM00061J crossref_primary_10_3390_ijms21072387 crossref_primary_10_1111_cts_12668 crossref_primary_10_1039_C8TB01795F crossref_primary_10_1016_j_cej_2024_152710 crossref_primary_10_1016_j_ijbiomac_2024_129391 crossref_primary_10_1002_med_21639 crossref_primary_10_1002_mco2_259 crossref_primary_10_1016_j_eurpolymj_2020_110097 crossref_primary_10_1016_j_jcis_2023_11_003 crossref_primary_10_1016_j_ijbiomac_2025_140351 crossref_primary_10_1021_acs_biomac_1c00745 crossref_primary_10_3390_pharmaceutics15051482 crossref_primary_10_1002_adfm_201906432 crossref_primary_10_1016_j_dyepig_2025_112718 crossref_primary_10_1021_acs_chemrev_0c00963 crossref_primary_10_1002_adfm_202009768 crossref_primary_10_1002_adhm_202201306 crossref_primary_10_1021_acs_bioconjchem_3c00186 crossref_primary_10_3390_jpm14111092 crossref_primary_10_3390_molecules28031498 crossref_primary_10_1039_C8BM00639C crossref_primary_10_1021_acsapm_3c00834 crossref_primary_10_1002_smo_20240017 crossref_primary_10_1021_acsnano_2c09752 crossref_primary_10_1016_j_coi_2022_102215 crossref_primary_10_1016_j_jddst_2024_106405 crossref_primary_10_1016_j_ejmech_2020_112526 crossref_primary_10_1002_adfm_201905352 crossref_primary_10_1016_j_jconrel_2020_11_009 crossref_primary_10_1016_j_molliq_2020_113157 crossref_primary_10_1016_j_addr_2019_08_004 crossref_primary_10_1007_s12274_021_3395_y crossref_primary_10_1039_D2NR02200A crossref_primary_10_1016_j_chemphyslip_2019_104837 crossref_primary_10_1016_j_colsurfa_2023_131990 crossref_primary_10_1016_j_addr_2023_114828 crossref_primary_10_1021_acs_biomac_2c00210 crossref_primary_10_3390_pharmaceutics13030428 crossref_primary_10_1021_acsami_3c15424 crossref_primary_10_3390_pharmaceutics12080707 crossref_primary_10_1016_j_addr_2023_115116 crossref_primary_10_1080_10717544_2024_2427138 crossref_primary_10_1038_s41596_024_01134_4 crossref_primary_10_1039_D0NA00716A crossref_primary_10_3390_polym12051057 crossref_primary_10_1039_C9TB01154D crossref_primary_10_1021_acsnano_3c09452 crossref_primary_10_1016_j_addr_2024_115195 crossref_primary_10_1080_10717544_2021_1983077 crossref_primary_10_1016_j_biopha_2024_117782 crossref_primary_10_1016_j_biopha_2024_116691 crossref_primary_10_1021_acs_langmuir_4c05176 crossref_primary_10_3390_molecules29133131 crossref_primary_10_1021_acsami_4c17024 crossref_primary_10_1016_j_biotechadv_2025_108546 crossref_primary_10_1021_acsnano_3c02009 crossref_primary_10_1016_j_bioactmat_2025_02_040 crossref_primary_10_1016_j_ijbiomac_2024_139157 crossref_primary_10_20517_evcna_2024_19 crossref_primary_10_1021_acs_molpharmaceut_3c00467 crossref_primary_10_1007_s12033_024_01087_9 crossref_primary_10_1002_jgm_3415 crossref_primary_10_1016_j_cis_2019_03_007 crossref_primary_10_1016_j_jbiosc_2021_12_004 crossref_primary_10_1021_acsnano_0c08549 crossref_primary_10_1248_bpb_b23_00081 crossref_primary_10_1016_j_apmt_2024_102066 crossref_primary_10_1007_s13346_021_00918_5 crossref_primary_10_1002_btm2_10213 crossref_primary_10_2217_nnm_2020_0146 crossref_primary_10_1116_6_0000380 crossref_primary_10_1002_adtp_201900206 crossref_primary_10_1016_j_bioadv_2023_213484 crossref_primary_10_1016_j_ijbiomac_2024_129581 crossref_primary_10_1039_D0PY01293A crossref_primary_10_1016_j_addr_2021_114041 crossref_primary_10_1002_smll_202410454 crossref_primary_10_3390_polym14112176 crossref_primary_10_1103_PhysRevE_106_034408 crossref_primary_10_1002_med_22036 crossref_primary_10_1016_j_ijpharm_2025_125470 crossref_primary_10_1002_macp_202300315 crossref_primary_10_1039_D0NA00454E crossref_primary_10_1002_wnan_1853 crossref_primary_10_1002_adma_202408000 crossref_primary_10_1021_acs_biomac_4c01061 crossref_primary_10_1016_j_nantod_2024_102517 crossref_primary_10_1002_adtp_202300388 crossref_primary_10_1016_j_msec_2021_112419 crossref_primary_10_1021_acs_molpharmaceut_9b00633 crossref_primary_10_1007_s12274_024_6729_8 crossref_primary_10_1186_s12951_023_02147_z crossref_primary_10_3390_pharmaceutics13010045 crossref_primary_10_1021_acs_biomac_4c00648 crossref_primary_10_1039_D4MH01781A crossref_primary_10_3390_pharmaceutics15051502 crossref_primary_10_1016_j_jconrel_2021_01_014 crossref_primary_10_1002_JLB_5BT0119_016R crossref_primary_10_1016_j_mtadv_2024_100484 crossref_primary_10_1016_j_cplett_2023_140663 crossref_primary_10_3390_pr9091527 crossref_primary_10_34133_bmef_0038 crossref_primary_10_1021_acs_bioconjchem_8b00695 crossref_primary_10_1016_j_jconrel_2019_01_004 crossref_primary_10_1016_j_jconrel_2022_10_061 crossref_primary_10_3390_pharmaceutics13050596 crossref_primary_10_1016_j_gastha_2023_07_012 crossref_primary_10_1021_acsmacrolett_1c00558 crossref_primary_10_3762_bjoc_16_167 crossref_primary_10_1002_adma_202105670 crossref_primary_10_2217_nnm_2022_0130 crossref_primary_10_1186_s12951_022_01377_x crossref_primary_10_1016_j_addr_2021_113948 crossref_primary_10_1016_j_ijpharm_2024_123864 crossref_primary_10_1186_s43141_021_00194_3 crossref_primary_10_1038_s41598_019_39107_3 crossref_primary_10_3390_pharmaceutics15082021 crossref_primary_10_1016_j_mtbio_2024_101425 crossref_primary_10_3390_pharmaceutics15102483 crossref_primary_10_2217_nnm_2021_0270 crossref_primary_10_1016_j_ijpharm_2018_12_085 crossref_primary_10_3390_pharmaceutics12080774 crossref_primary_10_26599_NR_2025_94907082 crossref_primary_10_1002_mco2_70035 crossref_primary_10_1016_j_jconrel_2022_12_008 crossref_primary_10_1021_acs_langmuir_3c00439 crossref_primary_10_1021_acsami_3c16534 crossref_primary_10_1016_j_matdes_2024_113097 crossref_primary_10_1016_j_addr_2024_115214 crossref_primary_10_1021_acs_molpharmaceut_4c00994 crossref_primary_10_1080_17425247_2024_2405206 crossref_primary_10_1016_j_jconrel_2020_10_045 crossref_primary_10_3389_fbioe_2019_00415 crossref_primary_10_3390_polym14040681 crossref_primary_10_1021_acsami_3c01705 crossref_primary_10_1039_D4NA00363B crossref_primary_10_1038_s41467_022_33348_z crossref_primary_10_1126_sciadv_abq2005 crossref_primary_10_1007_s11095_022_03296_w crossref_primary_10_1016_j_jconrel_2023_01_084 crossref_primary_10_1039_D0NR03156A crossref_primary_10_1021_acs_bioconjchem_2c00128 crossref_primary_10_1021_acsnano_1c00687 crossref_primary_10_3389_fchem_2021_645297 crossref_primary_10_1002_mabi_202300177 crossref_primary_10_3390_cancers11010082 crossref_primary_10_1073_pnas_2307800120 crossref_primary_10_1007_s10528_023_10416_7 crossref_primary_10_1016_j_addr_2024_115446 crossref_primary_10_1016_j_addr_2021_05_019 crossref_primary_10_1016_j_addr_2021_05_018 |
Cites_doi | 10.1021/mp400467x 10.1016/j.biomaterials.2013.01.030 10.1074/jbc.M110818200 10.1021/bc9600630 10.1016/S0168-3659(02)00129-3 10.1002/wnan.1452 10.1166/jnn.2014.9082 10.1038/mt.2012.185 10.1021/bm034041+ 10.1021/bm4000713 10.1016/j.nantod.2014.04.011 10.1021/acsnano.7b07583 10.1021/bc00023a012 10.1021/ar200151m 10.1038/nrg3763 10.1021/nn3049494 10.1021/ar3000162 10.1016/j.jconrel.2012.05.022 10.1038/nbt.2612 10.3390/nano7050094 10.1039/c2cs15309b 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R 10.1023/A:1007548826495 10.1016/j.jconrel.2010.11.004 10.1002/jgm.173 10.1073/pnas.92.16.7297 10.1021/bm4011408 10.1073/pnas.192581499 10.1016/j.jconrel.2010.01.036 10.1002/jgm.696 10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q 10.1006/mthe.2002.0631 10.1002/mabi.201400463 10.1038/nrd1775 10.1073/pnas.86.18.6982 10.1021/cr5006793 10.1126/science.175.4025.949 10.1016/j.jconrel.2009.06.031 10.1074/jbc.M308643200 10.1021/bc9801070 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ejpb.2018.05.034 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3441 |
EndPage | 190 |
ExternalDocumentID | 29859281 10_1016_j_ejpb_2018_05_034 S0939641118304879 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSP SSU SSZ T5K TEORI UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 ACLOT EFKBS ~HD |
ID | FETCH-LOGICAL-c466t-b4c0911b323f2d5ede8cd33c9b4edd3999bbbad23c1acae812477690c55b479d3 |
IEDL.DBID | .~1 |
ISSN | 0939-6411 1873-3441 |
IngestDate | Sun Sep 28 07:41:20 EDT 2025 Wed Feb 19 02:43:15 EST 2025 Tue Jul 01 00:58:48 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Fri Feb 23 02:36:41 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Proton sponge hypothesis Cationic polymers Nanomedicine Non-viral gene therapy Endosomal escape |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-b4c0911b323f2d5ede8cd33c9b4edd3999bbbad23c1acae812477690c55b479d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8653-2598 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0939641118304879 |
PMID | 29859281 |
PQID | 2049566344 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2049566344 pubmed_primary_29859281 crossref_citationtrail_10_1016_j_ejpb_2018_05_034 crossref_primary_10_1016_j_ejpb_2018_05_034 elsevier_sciencedirect_doi_10_1016_j_ejpb_2018_05_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 2018-Aug 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | European journal of pharmaceutics and biopharmaceutics |
PublicationTitleAlternate | Eur J Pharm Biopharm |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gottfried, Dean, a. (b0030) 2013 Choudhury, Kumar, Roy (b0240) 2013; 14 De Smedt, Demeester, Hennink (b0095) 2000; 17 Behr (b0085) 1997; 2 Thomas, Klibanov (b0135) 2002; 99 Ramamoorth (b0015) 2015; 9 Akinc, Thomas, Klibanov, Langer (b0130) 2005; 7 Canton, Battaglia (b0045) 2012; 41 Pack, Hoffman, Pun, Stayton (b0100) 2005; 4 Pack, Putnam, Langer (b0140) 2000; 67 Won, Sharma, Konieczny (b0215) 2009; 139 Friedmann, Roblin (b0005) 1972; 175 Lächelt, Wagner (b0090) 2015; 115 Rehman, Hoekstra, Zuhorn (b0160) 2013; 7 Neuberg, Kichler (b0205) 2014 Funhoff, van Nostrum, Koning, Schuurmans-Nieuwenbroek, Crommelin, Hennink (b0150) 2004; 5 Richard, Thibault, De Crescenzo, Buschmann, Lavertu (b0200) 2013; 14 Haensler, Szoka (b0105) 1993; 4 T.Merdan, K. Kunath, D.Fischer, J. Kopecek. T. Kissel, Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments, 19 (2002) 140–146. Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (b0025) 2014; 15 Godbey, Barry, Saggau, Wu, Mikos (b0185) 1999; 51 Forrest, Meister, Koerber, Pack (b0155) 2004; 21 Mo, Sun, Li, Zhang (b0195) 2013; 34 Sahay, Alakhova, Kabanov (b0040) 2010; 145 Selby, Cortez-Jugo, Such, Johnston (b0070) 2017; 9 Bieber, Meissner, Kostin, Niemann, Elsasser (b0190) 2002; 82 Riley, Vermerris (b0020) 2017; 7 Gilleron, Querbes, Zeigerer, Borodovsky, Marsico, Schubert, Manygoats, Seifert, Andree, Stöter (b0060) 2013; 31 Ziebarth, Wang (b0230) 2011; 11 Martens, Remaut, Demeester, De Smedt, Braeckmans (b0055) 2014; 9 Midoux, Monsigny (b0145) 1999; 10 Varkouhi, Scholte, Storm, Haisma (b0075) 2011; 151 Sonawane, Thiagarajah, Verkman (b0210) 2002; 277 Boussif, Lezoualc’h, Zanta, Mergny, Scherman, Demeneix, Behr (b0115) 1995; 92 Guo, Huang (b0035) 2012; 45 Forrest, Pack (b0180) 2002; 6 Liang, Lam (b0080) 2012 Sonawane, Szoka, Verkman (b0120) 2003; 278 Jones, Chen, Ravikrishnan, Rane, Pfeifer (b0010) 2013; 10 Shete, Prabhu, Patravale (b0065) 2014; 14 Pangarkar, Dinh, Mitragotri (b0050) 2012; 162 Behr, Demeneix, Loeffler, Perez-Mutul (b0110) 1989; 86 Benjaminsen, Mattebjerg, Henriksen, Moghimi, Andresen (b0175) 2013; 21 Singh, Maharjan, Park, Jiang, Kang, Choi, Cho (b0125) 2015; 15 Kichler, Leborgne, Coeytaux, Danos (b0170) 2001; 3 Vermeulen, Brans, Samal, Dubruel, Demeester, De Smedt, Remaut, Braeckmans (b0220) 2018; 12 Nguyen, Szoka (b0225) 2012; 45 Tang, Redemann, Szoka (b0235) 1996; 7 Jones (10.1016/j.ejpb.2018.05.034_b0010) 2013; 10 Tang (10.1016/j.ejpb.2018.05.034_b0235) 1996; 7 Benjaminsen (10.1016/j.ejpb.2018.05.034_b0175) 2013; 21 Lächelt (10.1016/j.ejpb.2018.05.034_b0090) 2015; 115 Pack (10.1016/j.ejpb.2018.05.034_b0140) 2000; 67 Yin (10.1016/j.ejpb.2018.05.034_b0025) 2014; 15 Mo (10.1016/j.ejpb.2018.05.034_b0195) 2013; 34 Gottfried (10.1016/j.ejpb.2018.05.034_b0030) 2013 Forrest (10.1016/j.ejpb.2018.05.034_b0155) 2004; 21 Sonawane (10.1016/j.ejpb.2018.05.034_b0120) 2003; 278 Choudhury (10.1016/j.ejpb.2018.05.034_b0240) 2013; 14 Pack (10.1016/j.ejpb.2018.05.034_b0100) 2005; 4 Canton (10.1016/j.ejpb.2018.05.034_b0045) 2012; 41 Rehman (10.1016/j.ejpb.2018.05.034_b0160) 2013; 7 Won (10.1016/j.ejpb.2018.05.034_b0215) 2009; 139 Ziebarth (10.1016/j.ejpb.2018.05.034_b0230) 2011; 11 Pangarkar (10.1016/j.ejpb.2018.05.034_b0050) 2012; 162 Riley (10.1016/j.ejpb.2018.05.034_b0020) 2017; 7 Vermeulen (10.1016/j.ejpb.2018.05.034_b0220) 2018; 12 Godbey (10.1016/j.ejpb.2018.05.034_b0185) 1999; 51 Haensler (10.1016/j.ejpb.2018.05.034_b0105) 1993; 4 Forrest (10.1016/j.ejpb.2018.05.034_b0180) 2002; 6 Richard (10.1016/j.ejpb.2018.05.034_b0200) 2013; 14 Boussif (10.1016/j.ejpb.2018.05.034_b0115) 1995; 92 Guo (10.1016/j.ejpb.2018.05.034_b0035) 2012; 45 Midoux (10.1016/j.ejpb.2018.05.034_b0145) 1999; 10 Neuberg (10.1016/j.ejpb.2018.05.034_b0205) 2014 Selby (10.1016/j.ejpb.2018.05.034_b0070) 2017; 9 Bieber (10.1016/j.ejpb.2018.05.034_b0190) 2002; 82 Friedmann (10.1016/j.ejpb.2018.05.034_b0005) 1972; 175 Funhoff (10.1016/j.ejpb.2018.05.034_b0150) 2004; 5 Martens (10.1016/j.ejpb.2018.05.034_b0055) 2014; 9 Behr (10.1016/j.ejpb.2018.05.034_b0085) 1997; 2 De Smedt (10.1016/j.ejpb.2018.05.034_b0095) 2000; 17 Gilleron (10.1016/j.ejpb.2018.05.034_b0060) 2013; 31 Akinc (10.1016/j.ejpb.2018.05.034_b0130) 2005; 7 Thomas (10.1016/j.ejpb.2018.05.034_b0135) 2002; 99 Shete (10.1016/j.ejpb.2018.05.034_b0065) 2014; 14 Liang (10.1016/j.ejpb.2018.05.034_b0080) 2012 Kichler (10.1016/j.ejpb.2018.05.034_b0170) 2001; 3 Sonawane (10.1016/j.ejpb.2018.05.034_b0210) 2002; 277 Sahay (10.1016/j.ejpb.2018.05.034_b0040) 2010; 145 Nguyen (10.1016/j.ejpb.2018.05.034_b0225) 2012; 45 Singh (10.1016/j.ejpb.2018.05.034_b0125) 2015; 15 Behr (10.1016/j.ejpb.2018.05.034_b0110) 1989; 86 Varkouhi (10.1016/j.ejpb.2018.05.034_b0075) 2011; 151 Ramamoorth (10.1016/j.ejpb.2018.05.034_b0015) 2015; 9 10.1016/j.ejpb.2018.05.034_b0165 |
References_xml | – volume: 15 start-page: 622 year: 2015 end-page: 635 ident: b0125 article-title: Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes publication-title: Macromol. Biosci. – volume: 99 start-page: 14640 year: 2002 end-page: 14645 ident: b0135 article-title: enhancing polyethylenimine’s delivery of plasmid dna into mammalian cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 17 start-page: 113 year: 2000 end-page: 126 ident: b0095 article-title: Cationic polymer based gene delivery systems publication-title: Pharm. Res. – volume: 4 start-page: 581 year: 2005 end-page: 593 ident: b0100 article-title: Design and development of polymers for gene delivery publication-title: Nat. Rev. Drug Discov. – start-page: 75 year: 2013 end-page: 88 ident: b0030 article-title: Extracellular and intracellular barriers to non-viral gene transfer publication-title: Nov. Gene. Ther. Approach. – volume: 9 start-page: 1 year: 2017 end-page: 23 ident: b0070 article-title: Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 2 start-page: 34 year: 1997 end-page: 36 ident: b0085 article-title: The proton sponge: a trick to enter cells the viruses did not exploit publication-title: Int. J. Chem. – volume: 4 start-page: 372 year: 1993 end-page: 379 ident: b0105 article-title: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture publication-title: Bioconjug. Chem. – volume: 41 start-page: 2718 year: 2012 end-page: 2739 ident: b0045 article-title: Endocytosis at the nanoscale publication-title: Chem. Soc. Rev. – volume: 51 start-page: 321 year: 1999 end-page: 328 ident: b0185 article-title: Poly ( ethylenimine ) -mediated transfection: a new paradigm for gene delivery publication-title: Inc. J. Biomed. Master Res. – volume: 115 start-page: 11043 year: 2015 end-page: 11078 ident: b0090 article-title: Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond) publication-title: Chem. Rev. – volume: 278 start-page: 44826 year: 2003 end-page: 44831 ident: b0120 article-title: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes publication-title: J. Biol. Chem. – volume: 67 start-page: 217 year: 2000 end-page: 223 ident: b0140 article-title: Design of imidazole-containing endosomolytic biopolymers for gene delivery publication-title: Biotechnol. Bioeng. – reference: T.Merdan, K. Kunath, D.Fischer, J. Kopecek. T. Kissel, Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments, 19 (2002) 140–146. – start-page: 429 year: 2012 end-page: 456 ident: b0080 article-title: Endosomal escape pathways for non-viral nucleic acid delivery systems publication-title: Molecular Regulation of Endocytosis – volume: 151 start-page: 220 year: 2011 end-page: 228 ident: b0075 article-title: Endosomal escape pathways for delivery of biologicals publication-title: J. Control. Release – volume: 7 start-page: 3767 year: 2013 end-page: 3777 ident: b0160 article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis publication-title: ACS Nano – volume: 175 start-page: 949 year: 1972 end-page: 955 ident: b0005 article-title: Gene therapy for human genetic disease? publication-title: Science – volume: 12 start-page: 2332 year: 2018 end-page: 2345 ident: b0220 article-title: endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles publication-title: ACS Nano – volume: 7 start-page: 703 year: 1996 end-page: 714 ident: b0235 article-title: In vitro gene delivery by degraded polyamidoamine dendrimers publication-title: Bioconjug. Chem. – volume: 7 start-page: 94 year: 2017 ident: b0020 article-title: recent advances in nanomaterials for gene delivery—a review publication-title: Nanomaterials – volume: 14 start-page: 3759 year: 2013 end-page: 3768 ident: b0240 article-title: Characterization of conformation and interaction of gene delivery vector polyethylenimine with phospholipid bilayer at different protonation state publication-title: Biomacromolecules – volume: 145 start-page: 182 year: 2010 end-page: 195 ident: b0040 article-title: Endocytosis of nanomedicines publication-title: J. Control. Release – volume: 11 start-page: 1 year: 2011 end-page: 29 ident: b0230 article-title: Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations publication-title: Biomacromolecules – volume: 14 start-page: 1732 year: 2013 end-page: 1740 ident: b0200 article-title: Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI publication-title: Biomacromolecules – volume: 21 start-page: 365 year: 2004 end-page: 371 ident: b0155 article-title: Partial acetylation of polyethylenimine enhances in vitro gene delivery publication-title: In Vitro – volume: 10 start-page: 4082 year: 2013 end-page: 4098 ident: b0010 article-title: Overcoming nonviral gene delivery barriers: perspective and future publication-title: Mol. Pharm. – volume: 162 start-page: 76 year: 2012 end-page: 83 ident: b0050 article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer publication-title: J. Control. Release – volume: 277 start-page: 5506 year: 2002 end-page: 5513 ident: b0210 article-title: Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator. Evidence for chloride accumulation during acidification publication-title: J. Biol. Chem. – volume: 10 start-page: 406 year: 1999 end-page: 411 ident: b0145 article-title: Efficient gene transfer by histidylated polylysine/pDNA complexes publication-title: Bioconjug. Chem. – volume: 9 start-page: 1 year: 2015 end-page: 6 ident: b0015 article-title: Non viral vectors in gene therapy- an overview publication-title: J. Clin. Diagnostic Res. – volume: 45 start-page: 971 year: 2012 end-page: 979 ident: b0035 article-title: Recent advances in non-viral vectors for gene delivery publication-title: Acc. Chem. Res. – volume: 86 start-page: 6982 year: 1989 end-page: 6986 ident: b0110 article-title: Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 149 year: 2013 end-page: 157 ident: b0175 article-title: The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH publication-title: Mol. Ther. – volume: 7 start-page: 657 year: 2005 end-page: 663 ident: b0130 article-title: Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis publication-title: J. Gene. Med. – year: 2014 ident: b0205 article-title: Recent Developments in Nucleic Acid Delivery with Polyethylenimines – volume: 45 start-page: 1153 year: 2012 end-page: 1162 ident: b0225 article-title: Nucleic acid delivery: the missing pieces of the puzzle? publication-title: Acc. Chem. Res. – volume: 92 start-page: 7297 year: 1995 end-page: 7301 ident: b0115 article-title: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine publication-title: Proc. Natl. Acad. Sci. – volume: 82 start-page: 441 year: 2002 end-page: 454 ident: b0190 article-title: Intracellular route and transcriptional competence of polyethylenimine-DNA complexes publication-title: J. Control. Release – volume: 3 start-page: 135 year: 2001 end-page: 144 ident: b0170 article-title: Polyethylenimine-mediated gene delivery: a mechanistic study publication-title: J. Gene. Med. – volume: 15 start-page: 541 year: 2014 end-page: 555 ident: b0025 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. – volume: 5 start-page: 32 year: 2004 end-page: 39 ident: b0150 article-title: Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH publication-title: Biomacromolecules – volume: 34 start-page: 2773 year: 2013 end-page: 2786 ident: b0195 article-title: Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids publication-title: Biomaterials – volume: 31 start-page: 638 year: 2013 end-page: 646 ident: b0060 article-title: Image-based analysis of lipid nanoparticle–mediated sirna delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. – volume: 9 start-page: 344 year: 2014 end-page: 364 ident: b0055 article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act publication-title: Nano. Today – volume: 139 start-page: 88 year: 2009 end-page: 93 ident: b0215 article-title: Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes publication-title: J. Control. Release – volume: 14 start-page: 460 year: 2014 end-page: 474 ident: b0065 article-title: Endosomal escape: a bottleneck in intracellular delivery publication-title: J. Nanosci. Nanotechnol. – volume: 6 start-page: 57 year: 2002 end-page: 66 ident: b0180 article-title: On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design publication-title: Mol. Ther. – volume: 10 start-page: 4082 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0010 article-title: Overcoming nonviral gene delivery barriers: perspective and future publication-title: Mol. Pharm. doi: 10.1021/mp400467x – volume: 34 start-page: 2773 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0195 article-title: Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.030 – volume: 277 start-page: 5506 year: 2002 ident: 10.1016/j.ejpb.2018.05.034_b0210 article-title: Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator. Evidence for chloride accumulation during acidification publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110818200 – volume: 7 start-page: 703 year: 1996 ident: 10.1016/j.ejpb.2018.05.034_b0235 article-title: In vitro gene delivery by degraded polyamidoamine dendrimers publication-title: Bioconjug. Chem. doi: 10.1021/bc9600630 – volume: 2 start-page: 34 year: 1997 ident: 10.1016/j.ejpb.2018.05.034_b0085 article-title: The proton sponge: a trick to enter cells the viruses did not exploit publication-title: Int. J. Chem. – volume: 82 start-page: 441 year: 2002 ident: 10.1016/j.ejpb.2018.05.034_b0190 article-title: Intracellular route and transcriptional competence of polyethylenimine-DNA complexes publication-title: J. Control. Release doi: 10.1016/S0168-3659(02)00129-3 – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.ejpb.2018.05.034_b0070 article-title: Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1452 – volume: 14 start-page: 460 year: 2014 ident: 10.1016/j.ejpb.2018.05.034_b0065 article-title: Endosomal escape: a bottleneck in intracellular delivery publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.9082 – volume: 21 start-page: 149 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0175 article-title: The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH publication-title: Mol. Ther. doi: 10.1038/mt.2012.185 – volume: 5 start-page: 32 year: 2004 ident: 10.1016/j.ejpb.2018.05.034_b0150 article-title: Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH publication-title: Biomacromolecules doi: 10.1021/bm034041+ – volume: 14 start-page: 1732 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0200 article-title: Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI publication-title: Biomacromolecules doi: 10.1021/bm4000713 – volume: 9 start-page: 344 year: 2014 ident: 10.1016/j.ejpb.2018.05.034_b0055 article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act publication-title: Nano. Today doi: 10.1016/j.nantod.2014.04.011 – ident: 10.1016/j.ejpb.2018.05.034_b0165 – volume: 12 start-page: 2332 year: 2018 ident: 10.1016/j.ejpb.2018.05.034_b0220 article-title: endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles publication-title: ACS Nano doi: 10.1021/acsnano.7b07583 – volume: 11 start-page: 1 year: 2011 ident: 10.1016/j.ejpb.2018.05.034_b0230 article-title: Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations publication-title: Biomacromolecules – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.ejpb.2018.05.034_b0015 article-title: Non viral vectors in gene therapy- an overview publication-title: J. Clin. Diagnostic Res. – volume: 4 start-page: 372 year: 1993 ident: 10.1016/j.ejpb.2018.05.034_b0105 article-title: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture publication-title: Bioconjug. Chem. doi: 10.1021/bc00023a012 – volume: 45 start-page: 971 year: 2012 ident: 10.1016/j.ejpb.2018.05.034_b0035 article-title: Recent advances in non-viral vectors for gene delivery publication-title: Acc. Chem. Res. doi: 10.1021/ar200151m – start-page: 75 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0030 article-title: Extracellular and intracellular barriers to non-viral gene transfer publication-title: Nov. Gene. Ther. Approach. – year: 2014 ident: 10.1016/j.ejpb.2018.05.034_b0205 – volume: 15 start-page: 541 year: 2014 ident: 10.1016/j.ejpb.2018.05.034_b0025 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3763 – volume: 7 start-page: 3767 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0160 article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis publication-title: ACS Nano doi: 10.1021/nn3049494 – volume: 45 start-page: 1153 year: 2012 ident: 10.1016/j.ejpb.2018.05.034_b0225 article-title: Nucleic acid delivery: the missing pieces of the puzzle? publication-title: Acc. Chem. Res. doi: 10.1021/ar3000162 – volume: 162 start-page: 76 year: 2012 ident: 10.1016/j.ejpb.2018.05.034_b0050 article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.05.022 – volume: 31 start-page: 638 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0060 article-title: Image-based analysis of lipid nanoparticle–mediated sirna delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2612 – volume: 7 start-page: 94 year: 2017 ident: 10.1016/j.ejpb.2018.05.034_b0020 article-title: recent advances in nanomaterials for gene delivery—a review publication-title: Nanomaterials doi: 10.3390/nano7050094 – volume: 41 start-page: 2718 year: 2012 ident: 10.1016/j.ejpb.2018.05.034_b0045 article-title: Endocytosis at the nanoscale publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15309b – volume: 51 start-page: 321 year: 1999 ident: 10.1016/j.ejpb.2018.05.034_b0185 article-title: Poly ( ethylenimine ) -mediated transfection: a new paradigm for gene delivery publication-title: Inc. J. Biomed. Master Res. doi: 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R – volume: 17 start-page: 113 year: 2000 ident: 10.1016/j.ejpb.2018.05.034_b0095 article-title: Cationic polymer based gene delivery systems publication-title: Pharm. Res. doi: 10.1023/A:1007548826495 – volume: 151 start-page: 220 year: 2011 ident: 10.1016/j.ejpb.2018.05.034_b0075 article-title: Endosomal escape pathways for delivery of biologicals publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.11.004 – volume: 3 start-page: 135 year: 2001 ident: 10.1016/j.ejpb.2018.05.034_b0170 article-title: Polyethylenimine-mediated gene delivery: a mechanistic study publication-title: J. Gene. Med. doi: 10.1002/jgm.173 – volume: 92 start-page: 7297 year: 1995 ident: 10.1016/j.ejpb.2018.05.034_b0115 article-title: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.16.7297 – volume: 14 start-page: 3759 year: 2013 ident: 10.1016/j.ejpb.2018.05.034_b0240 article-title: Characterization of conformation and interaction of gene delivery vector polyethylenimine with phospholipid bilayer at different protonation state publication-title: Biomacromolecules doi: 10.1021/bm4011408 – volume: 99 start-page: 14640 year: 2002 ident: 10.1016/j.ejpb.2018.05.034_b0135 article-title: enhancing polyethylenimine’s delivery of plasmid dna into mammalian cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.192581499 – volume: 145 start-page: 182 year: 2010 ident: 10.1016/j.ejpb.2018.05.034_b0040 article-title: Endocytosis of nanomedicines publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.01.036 – volume: 7 start-page: 657 year: 2005 ident: 10.1016/j.ejpb.2018.05.034_b0130 article-title: Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis publication-title: J. Gene. Med. doi: 10.1002/jgm.696 – volume: 67 start-page: 217 year: 2000 ident: 10.1016/j.ejpb.2018.05.034_b0140 article-title: Design of imidazole-containing endosomolytic biopolymers for gene delivery publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q – volume: 6 start-page: 57 year: 2002 ident: 10.1016/j.ejpb.2018.05.034_b0180 article-title: On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design publication-title: Mol. Ther. doi: 10.1006/mthe.2002.0631 – volume: 15 start-page: 622 year: 2015 ident: 10.1016/j.ejpb.2018.05.034_b0125 article-title: Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes publication-title: Macromol. Biosci. doi: 10.1002/mabi.201400463 – volume: 4 start-page: 581 year: 2005 ident: 10.1016/j.ejpb.2018.05.034_b0100 article-title: Design and development of polymers for gene delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1775 – volume: 86 start-page: 6982 year: 1989 ident: 10.1016/j.ejpb.2018.05.034_b0110 article-title: Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.86.18.6982 – volume: 115 start-page: 11043 year: 2015 ident: 10.1016/j.ejpb.2018.05.034_b0090 article-title: Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond) publication-title: Chem. Rev. doi: 10.1021/cr5006793 – volume: 175 start-page: 949 year: 1972 ident: 10.1016/j.ejpb.2018.05.034_b0005 article-title: Gene therapy for human genetic disease? publication-title: Science doi: 10.1126/science.175.4025.949 – start-page: 429 year: 2012 ident: 10.1016/j.ejpb.2018.05.034_b0080 article-title: Endosomal escape pathways for non-viral nucleic acid delivery systems – volume: 21 start-page: 365 year: 2004 ident: 10.1016/j.ejpb.2018.05.034_b0155 article-title: Partial acetylation of polyethylenimine enhances in vitro gene delivery publication-title: In Vitro – volume: 139 start-page: 88 year: 2009 ident: 10.1016/j.ejpb.2018.05.034_b0215 article-title: Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2009.06.031 – volume: 278 start-page: 44826 year: 2003 ident: 10.1016/j.ejpb.2018.05.034_b0120 article-title: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308643200 – volume: 10 start-page: 406 year: 1999 ident: 10.1016/j.ejpb.2018.05.034_b0145 article-title: Efficient gene transfer by histidylated polylysine/pDNA complexes publication-title: Bioconjug. Chem. doi: 10.1021/bc9801070 |
SSID | ssj0004758 |
Score | 2.6438112 |
SecondaryResourceType | review_article |
Snippet | In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 184 |
SubjectTerms | Cationic polymers Endosomal escape Nanomedicine Non-viral gene therapy Proton sponge hypothesis |
Title | The proton sponge hypothesis: Fable or fact? |
URI | https://dx.doi.org/10.1016/j.ejpb.2018.05.034 https://www.ncbi.nlm.nih.gov/pubmed/29859281 https://www.proquest.com/docview/2049566344 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004758 issn: 0939-6411 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1873-3441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004758 issn: 0939-6411 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004758 issn: 0939-6411 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-3441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004758 issn: 0939-6411 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004758 issn: 0939-6411 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXryI-y4RxItTxzZJ03gRGRxGRRFU8BaapTqDdIZZDnPxt_teFwcPevDY9oWWl-Qt9Pu-EHIsk0wp4XjgjE0DzmArGqdMwFMGCVYKkxlsFO8f4u4Lv30Vrw3SrrkwCKusYn8Z04toXd1pVd5sDXu91hP04irmsFcTaMkTiSQ-VP-CNX32OYd5cFmc0YnGAVpXxJkS4-X7Q4PwrqRQ72T8t-T0W_FZJKHOClmuqkd6VX7gKmn4fI2cPJby07MmfZ6zqcZNekIf58LUs3XShMcUhRkGOUVk7Jun77MhUrDGvfEF7SCLig5GFMkOlxvkpXP93O4G1WkJgeVxPAkMt5D7Q8MilkVOeOcT6xizynDvHNQhyhiTuojZMLWpx8QuJfTGVgjDpXJskyzkg9xvE-qd9D4xDMVqeBrFyobcySzkBsqDTMQ7JKzdpG0lJY4nWnzoGjPW1-haja7V50KDa3fI6feYYSmk8ae1qL2vfywHDZH-z3FH9VRp2Cf48yPN_WA6BiNsBWPGwWarnMPv74hUIlSUhLv_fOseWcKrEhe4TxYmo6k_gFplYg6LxXhIFq9u7roPX4hw5vA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOcBlBctjWR7rlRAXGpXEdhzvZYUQVVmgQqJI3Kz4kd2iVVrRcui_Z6ZJqDjAgWs8I1tjex7KfJ8BjlRWaC29iLx1eSQ4XkXrtY1EzjHAKmkLS4XiTT_t3Ys_D_JhCc4bLAy1Vda-v_Lpc29df-nU1uyMh8POHdbiOhV4VzMsyTOll2FFSPTJLVg5u7zq9RfwSDV_ppPkI1KosTNVm1d4HFvq8MrmBJ5cvBef3ss_53Gouw5f6gSSnVVr3IClUH6F49uKgXrWZoMFoGrSZsfsdsFNPduENg4z4mYYlYyaY_8G9m82JhTWZDj5xboEpGKjJ0Z4h99bcN-9GJz3ovrBhMiJNJ1GVjgM_7HlCS8SL4MPmfOcO21F8B5TEW2tzX3CXZy7PFBsVwrLYyelFUp7vg2tclSGb8CCVyFklhNfjciTVLtYeFXEwmKGUMh0F-LGTMbVbOL0qMV_07SNPRoyrSHTmlNp0LS7cPKqM664ND6Ulo31zZsTYdDZf6j3s9kqg1eF_n_kZRg9T1CIqsGUC5TZqfbwdR2JzqROsvj7J2f9Aau9wc21ub7sX-3BGo1UbYL70Jo-PYcDTF2m9rA-mi9t4-mb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proton+sponge+hypothesis%3A+Fable+or+fact%3F&rft.jtitle=European+journal+of+pharmaceutics+and+biopharmaceutics&rft.au=Vermeulen%2C+Lotte+M+P&rft.au=De+Smedt%2C+Stefaan+C&rft.au=Remaut%2C+Katrien&rft.au=Braeckmans%2C+Kevin&rft.date=2018-08-01&rft.issn=1873-3441&rft.eissn=1873-3441&rft.volume=129&rft.spage=184&rft_id=info:doi/10.1016%2Fj.ejpb.2018.05.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-6411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-6411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-6411&client=summon |