The proton sponge hypothesis: Fable or fact?

In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for ef...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmaceutics and biopharmaceutics Vol. 129; pp. 184 - 190
Main Authors Vermeulen, Lotte M.P., De Smedt, Stefaan C., Remaut, Katrien, Braeckmans, Kevin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0939-6411
1873-3441
1873-3441
DOI10.1016/j.ejpb.2018.05.034

Cover

Abstract In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late ‘90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.
AbstractList In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.
In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey to deliver the cargo to the intended intracellular target, many biological barriers need to be overcome. One of the major bottlenecks for efficient transfection is the endosomal barrier since nanoparticles often remain entrapped inside endosomes and are trafficked towards the lysosomes where the cargo is degraded. For cationic polymers, the proton sponge hypothesis was introduced in the late '90s as a way to explain their endosomal escape properties. However, to date, no consensus has been reached in the scientific community about the validity of this hypothesis due to many contradictory reports. Here we review the sometimes conflicting reports that have been published on the proton sponge hypothesis. We also discuss membrane destabilization and polymer swelling as additional factors that might influence endosomal escape of polyplexes. Based on the key publications on this subject, we aim to launch a consensus on the role of the proton sponge hypothesis in endosomal escape.
Author Braeckmans, Kevin
De Smedt, Stefaan C.
Vermeulen, Lotte M.P.
Remaut, Katrien
Author_xml – sequence: 1
  givenname: Lotte M.P.
  surname: Vermeulen
  fullname: Vermeulen, Lotte M.P.
  organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
– sequence: 2
  givenname: Stefaan C.
  surname: De Smedt
  fullname: De Smedt, Stefaan C.
  organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
– sequence: 3
  givenname: Katrien
  orcidid: 0000-0002-8653-2598
  surname: Remaut
  fullname: Remaut, Katrien
  organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
– sequence: 4
  givenname: Kevin
  surname: Braeckmans
  fullname: Braeckmans, Kevin
  email: Kevin.Braeckmans@UGent.be
  organization: Lab. General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29859281$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEUhYMotlX_gAuZpQtnzGseEUGk-IKCG12HPG5tynQyJqnQf--UthsXru7mfId7vgk67nwHCF0SXBBMqttlActeFxSTpsBlgRk_QmPS1CxnnJNjNMaCibzihIzQJMYlxpjXZXOKRlQ0paANGaObjwVkffDJd1nsffcF2WLT-7SA6OJd9qx0C5kP2VyZ9HCOTuaqjXCxv2fo8_npY_qaz95f3qaPs9zwqkq55gYLQjSjbE5tCRYaYxkzQnOwlgkhtNbKUmaIMgoaQnldVwKbstS8Fpadoetd7_DY9xpikisXDbSt6sCvo6SYi7KqhpVD9GofXesVWNkHt1JhIw8Lh0CzC5jgYwwwl8YllZzvUlCulQTLrUy5lFuZcitT4lIOMgeU_kEP7f9C9zsIBkE_DoKMxkFnwLoAJknr3X_4L-s2jCY
CitedBy_id crossref_primary_10_1016_j_peptides_2021_170542
crossref_primary_10_1021_acsomega_9b00066
crossref_primary_10_1039_D2RA00713D
crossref_primary_10_1021_acsami_3c05335
crossref_primary_10_3390_pharmaceutics13101549
crossref_primary_10_1039_D2CS00106C
crossref_primary_10_1021_acsnano_3c06225
crossref_primary_10_1016_j_jconrel_2023_02_019
crossref_primary_10_1016_j_jconrel_2024_01_067
crossref_primary_10_1002_chem_202100832
crossref_primary_10_1016_j_actbio_2022_05_036
crossref_primary_10_1016_j_jconrel_2023_09_001
crossref_primary_10_3390_ijms252312787
crossref_primary_10_1016_j_msec_2021_111875
crossref_primary_10_1021_acsomega_0c03367
crossref_primary_10_1002_pep2_24168
crossref_primary_10_1016_j_colcom_2021_100449
crossref_primary_10_1016_j_colsurfb_2020_110804
crossref_primary_10_1186_s12951_022_01336_6
crossref_primary_10_1016_j_mrrev_2023_108468
crossref_primary_10_1134_S0022093021060132
crossref_primary_10_1016_j_biomaterials_2021_121010
crossref_primary_10_1002_slct_202301183
crossref_primary_10_1002_app_49400
crossref_primary_10_1016_j_pharmthera_2021_107871
crossref_primary_10_1007_s40259_021_00500_y
crossref_primary_10_1186_s12951_024_03004_3
crossref_primary_10_1002_gch2_202400217
crossref_primary_10_1007_s10238_022_00925_x
crossref_primary_10_3390_pharmaceutics16020275
crossref_primary_10_1007_s40097_022_00487_0
crossref_primary_10_1002_adhm_202302495
crossref_primary_10_3390_ijms22020831
crossref_primary_10_1088_1742_6596_2608_1_012026
crossref_primary_10_1016_j_ijpharm_2024_124007
crossref_primary_10_1039_D0BM01367F
crossref_primary_10_3390_nano10091816
crossref_primary_10_1016_j_nantod_2023_101887
crossref_primary_10_3390_pharmaceutics16060779
crossref_primary_10_1016_j_colsurfb_2022_112899
crossref_primary_10_1016_j_ijbiomac_2023_124673
crossref_primary_10_1073_pnas_2301067120
crossref_primary_10_3390_cancers13112631
crossref_primary_10_1016_j_actbio_2020_09_027
crossref_primary_10_1016_j_ijpharm_2022_121509
crossref_primary_10_3390_pharmaceutics14112302
crossref_primary_10_1016_j_heliyon_2024_e36057
crossref_primary_10_1016_j_intimp_2024_112730
crossref_primary_10_3390_pharmaceutics14112427
crossref_primary_10_3390_pharmaceutics15041130
crossref_primary_10_1007_s13346_024_01563_4
crossref_primary_10_1002_adma_202419538
crossref_primary_10_1021_acsnano_1c05099
crossref_primary_10_1039_C8BM01643G
crossref_primary_10_1039_C9BM01112A
crossref_primary_10_1016_j_ijpharm_2024_125109
crossref_primary_10_1039_D4PY00234B
crossref_primary_10_1002_advs_202309748
crossref_primary_10_1016_j_ijpharm_2024_125107
crossref_primary_10_1016_j_addr_2023_114773
crossref_primary_10_1021_jacsau_3c00126
crossref_primary_10_1021_acs_nanolett_4c04291
crossref_primary_10_1016_j_jddst_2021_103079
crossref_primary_10_3390_ma15010179
crossref_primary_10_1016_j_jconrel_2022_03_020
crossref_primary_10_1002_mabi_202300362
crossref_primary_10_1016_j_jconrel_2022_08_005
crossref_primary_10_1021_acs_biomac_0c01283
crossref_primary_10_1016_j_jconrel_2021_03_027
crossref_primary_10_1021_acsomega_8b02757
crossref_primary_10_1039_D1NJ02115J
crossref_primary_10_3390_pharmaceutics15071999
crossref_primary_10_1021_acs_bioconjchem_8b00732
crossref_primary_10_3390_ijms24010840
crossref_primary_10_1016_j_nano_2022_102626
crossref_primary_10_1039_D1NR04460E
crossref_primary_10_1039_D4BM01661K
crossref_primary_10_1021_acsnano_2c06337
crossref_primary_10_3390_pharmaceutics16070868
crossref_primary_10_1016_j_colcom_2021_100406
crossref_primary_10_1016_j_cbpa_2024_102499
crossref_primary_10_1016_j_ijpharm_2023_123727
crossref_primary_10_1002_adtp_202300005
crossref_primary_10_1098_rsob_210194
crossref_primary_10_1039_D2BM00061J
crossref_primary_10_3390_ijms21072387
crossref_primary_10_1111_cts_12668
crossref_primary_10_1039_C8TB01795F
crossref_primary_10_1016_j_cej_2024_152710
crossref_primary_10_1016_j_ijbiomac_2024_129391
crossref_primary_10_1002_med_21639
crossref_primary_10_1002_mco2_259
crossref_primary_10_1016_j_eurpolymj_2020_110097
crossref_primary_10_1016_j_jcis_2023_11_003
crossref_primary_10_1016_j_ijbiomac_2025_140351
crossref_primary_10_1021_acs_biomac_1c00745
crossref_primary_10_3390_pharmaceutics15051482
crossref_primary_10_1002_adfm_201906432
crossref_primary_10_1016_j_dyepig_2025_112718
crossref_primary_10_1021_acs_chemrev_0c00963
crossref_primary_10_1002_adfm_202009768
crossref_primary_10_1002_adhm_202201306
crossref_primary_10_1021_acs_bioconjchem_3c00186
crossref_primary_10_3390_jpm14111092
crossref_primary_10_3390_molecules28031498
crossref_primary_10_1039_C8BM00639C
crossref_primary_10_1021_acsapm_3c00834
crossref_primary_10_1002_smo_20240017
crossref_primary_10_1021_acsnano_2c09752
crossref_primary_10_1016_j_coi_2022_102215
crossref_primary_10_1016_j_jddst_2024_106405
crossref_primary_10_1016_j_ejmech_2020_112526
crossref_primary_10_1002_adfm_201905352
crossref_primary_10_1016_j_jconrel_2020_11_009
crossref_primary_10_1016_j_molliq_2020_113157
crossref_primary_10_1016_j_addr_2019_08_004
crossref_primary_10_1007_s12274_021_3395_y
crossref_primary_10_1039_D2NR02200A
crossref_primary_10_1016_j_chemphyslip_2019_104837
crossref_primary_10_1016_j_colsurfa_2023_131990
crossref_primary_10_1016_j_addr_2023_114828
crossref_primary_10_1021_acs_biomac_2c00210
crossref_primary_10_3390_pharmaceutics13030428
crossref_primary_10_1021_acsami_3c15424
crossref_primary_10_3390_pharmaceutics12080707
crossref_primary_10_1016_j_addr_2023_115116
crossref_primary_10_1080_10717544_2024_2427138
crossref_primary_10_1038_s41596_024_01134_4
crossref_primary_10_1039_D0NA00716A
crossref_primary_10_3390_polym12051057
crossref_primary_10_1039_C9TB01154D
crossref_primary_10_1021_acsnano_3c09452
crossref_primary_10_1016_j_addr_2024_115195
crossref_primary_10_1080_10717544_2021_1983077
crossref_primary_10_1016_j_biopha_2024_117782
crossref_primary_10_1016_j_biopha_2024_116691
crossref_primary_10_1021_acs_langmuir_4c05176
crossref_primary_10_3390_molecules29133131
crossref_primary_10_1021_acsami_4c17024
crossref_primary_10_1016_j_biotechadv_2025_108546
crossref_primary_10_1021_acsnano_3c02009
crossref_primary_10_1016_j_bioactmat_2025_02_040
crossref_primary_10_1016_j_ijbiomac_2024_139157
crossref_primary_10_20517_evcna_2024_19
crossref_primary_10_1021_acs_molpharmaceut_3c00467
crossref_primary_10_1007_s12033_024_01087_9
crossref_primary_10_1002_jgm_3415
crossref_primary_10_1016_j_cis_2019_03_007
crossref_primary_10_1016_j_jbiosc_2021_12_004
crossref_primary_10_1021_acsnano_0c08549
crossref_primary_10_1248_bpb_b23_00081
crossref_primary_10_1016_j_apmt_2024_102066
crossref_primary_10_1007_s13346_021_00918_5
crossref_primary_10_1002_btm2_10213
crossref_primary_10_2217_nnm_2020_0146
crossref_primary_10_1116_6_0000380
crossref_primary_10_1002_adtp_201900206
crossref_primary_10_1016_j_bioadv_2023_213484
crossref_primary_10_1016_j_ijbiomac_2024_129581
crossref_primary_10_1039_D0PY01293A
crossref_primary_10_1016_j_addr_2021_114041
crossref_primary_10_1002_smll_202410454
crossref_primary_10_3390_polym14112176
crossref_primary_10_1103_PhysRevE_106_034408
crossref_primary_10_1002_med_22036
crossref_primary_10_1016_j_ijpharm_2025_125470
crossref_primary_10_1002_macp_202300315
crossref_primary_10_1039_D0NA00454E
crossref_primary_10_1002_wnan_1853
crossref_primary_10_1002_adma_202408000
crossref_primary_10_1021_acs_biomac_4c01061
crossref_primary_10_1016_j_nantod_2024_102517
crossref_primary_10_1002_adtp_202300388
crossref_primary_10_1016_j_msec_2021_112419
crossref_primary_10_1021_acs_molpharmaceut_9b00633
crossref_primary_10_1007_s12274_024_6729_8
crossref_primary_10_1186_s12951_023_02147_z
crossref_primary_10_3390_pharmaceutics13010045
crossref_primary_10_1021_acs_biomac_4c00648
crossref_primary_10_1039_D4MH01781A
crossref_primary_10_3390_pharmaceutics15051502
crossref_primary_10_1016_j_jconrel_2021_01_014
crossref_primary_10_1002_JLB_5BT0119_016R
crossref_primary_10_1016_j_mtadv_2024_100484
crossref_primary_10_1016_j_cplett_2023_140663
crossref_primary_10_3390_pr9091527
crossref_primary_10_34133_bmef_0038
crossref_primary_10_1021_acs_bioconjchem_8b00695
crossref_primary_10_1016_j_jconrel_2019_01_004
crossref_primary_10_1016_j_jconrel_2022_10_061
crossref_primary_10_3390_pharmaceutics13050596
crossref_primary_10_1016_j_gastha_2023_07_012
crossref_primary_10_1021_acsmacrolett_1c00558
crossref_primary_10_3762_bjoc_16_167
crossref_primary_10_1002_adma_202105670
crossref_primary_10_2217_nnm_2022_0130
crossref_primary_10_1186_s12951_022_01377_x
crossref_primary_10_1016_j_addr_2021_113948
crossref_primary_10_1016_j_ijpharm_2024_123864
crossref_primary_10_1186_s43141_021_00194_3
crossref_primary_10_1038_s41598_019_39107_3
crossref_primary_10_3390_pharmaceutics15082021
crossref_primary_10_1016_j_mtbio_2024_101425
crossref_primary_10_3390_pharmaceutics15102483
crossref_primary_10_2217_nnm_2021_0270
crossref_primary_10_1016_j_ijpharm_2018_12_085
crossref_primary_10_3390_pharmaceutics12080774
crossref_primary_10_26599_NR_2025_94907082
crossref_primary_10_1002_mco2_70035
crossref_primary_10_1016_j_jconrel_2022_12_008
crossref_primary_10_1021_acs_langmuir_3c00439
crossref_primary_10_1021_acsami_3c16534
crossref_primary_10_1016_j_matdes_2024_113097
crossref_primary_10_1016_j_addr_2024_115214
crossref_primary_10_1021_acs_molpharmaceut_4c00994
crossref_primary_10_1080_17425247_2024_2405206
crossref_primary_10_1016_j_jconrel_2020_10_045
crossref_primary_10_3389_fbioe_2019_00415
crossref_primary_10_3390_polym14040681
crossref_primary_10_1021_acsami_3c01705
crossref_primary_10_1039_D4NA00363B
crossref_primary_10_1038_s41467_022_33348_z
crossref_primary_10_1126_sciadv_abq2005
crossref_primary_10_1007_s11095_022_03296_w
crossref_primary_10_1016_j_jconrel_2023_01_084
crossref_primary_10_1039_D0NR03156A
crossref_primary_10_1021_acs_bioconjchem_2c00128
crossref_primary_10_1021_acsnano_1c00687
crossref_primary_10_3389_fchem_2021_645297
crossref_primary_10_1002_mabi_202300177
crossref_primary_10_3390_cancers11010082
crossref_primary_10_1073_pnas_2307800120
crossref_primary_10_1007_s10528_023_10416_7
crossref_primary_10_1016_j_addr_2024_115446
crossref_primary_10_1016_j_addr_2021_05_019
crossref_primary_10_1016_j_addr_2021_05_018
Cites_doi 10.1021/mp400467x
10.1016/j.biomaterials.2013.01.030
10.1074/jbc.M110818200
10.1021/bc9600630
10.1016/S0168-3659(02)00129-3
10.1002/wnan.1452
10.1166/jnn.2014.9082
10.1038/mt.2012.185
10.1021/bm034041+
10.1021/bm4000713
10.1016/j.nantod.2014.04.011
10.1021/acsnano.7b07583
10.1021/bc00023a012
10.1021/ar200151m
10.1038/nrg3763
10.1021/nn3049494
10.1021/ar3000162
10.1016/j.jconrel.2012.05.022
10.1038/nbt.2612
10.3390/nano7050094
10.1039/c2cs15309b
10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R
10.1023/A:1007548826495
10.1016/j.jconrel.2010.11.004
10.1002/jgm.173
10.1073/pnas.92.16.7297
10.1021/bm4011408
10.1073/pnas.192581499
10.1016/j.jconrel.2010.01.036
10.1002/jgm.696
10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q
10.1006/mthe.2002.0631
10.1002/mabi.201400463
10.1038/nrd1775
10.1073/pnas.86.18.6982
10.1021/cr5006793
10.1126/science.175.4025.949
10.1016/j.jconrel.2009.06.031
10.1074/jbc.M308643200
10.1021/bc9801070
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ejpb.2018.05.034
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3441
EndPage 190
ExternalDocumentID 29859281
10_1016_j_ejpb_2018_05_034
S0939641118304879
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSP
SSU
SSZ
T5K
TEORI
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ACLOT
EFKBS
~HD
ID FETCH-LOGICAL-c466t-b4c0911b323f2d5ede8cd33c9b4edd3999bbbad23c1acae812477690c55b479d3
IEDL.DBID .~1
ISSN 0939-6411
1873-3441
IngestDate Sun Sep 28 07:41:20 EDT 2025
Wed Feb 19 02:43:15 EST 2025
Tue Jul 01 00:58:48 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Fri Feb 23 02:36:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Proton sponge hypothesis
Cationic polymers
Nanomedicine
Non-viral gene therapy
Endosomal escape
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c466t-b4c0911b323f2d5ede8cd33c9b4edd3999bbbad23c1acae812477690c55b479d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8653-2598
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0939641118304879
PMID 29859281
PQID 2049566344
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2049566344
pubmed_primary_29859281
crossref_citationtrail_10_1016_j_ejpb_2018_05_034
crossref_primary_10_1016_j_ejpb_2018_05_034
elsevier_sciencedirect_doi_10_1016_j_ejpb_2018_05_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
2018-Aug
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of pharmaceutics and biopharmaceutics
PublicationTitleAlternate Eur J Pharm Biopharm
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gottfried, Dean, a. (b0030) 2013
Choudhury, Kumar, Roy (b0240) 2013; 14
De Smedt, Demeester, Hennink (b0095) 2000; 17
Behr (b0085) 1997; 2
Thomas, Klibanov (b0135) 2002; 99
Ramamoorth (b0015) 2015; 9
Akinc, Thomas, Klibanov, Langer (b0130) 2005; 7
Canton, Battaglia (b0045) 2012; 41
Pack, Hoffman, Pun, Stayton (b0100) 2005; 4
Pack, Putnam, Langer (b0140) 2000; 67
Won, Sharma, Konieczny (b0215) 2009; 139
Friedmann, Roblin (b0005) 1972; 175
Lächelt, Wagner (b0090) 2015; 115
Rehman, Hoekstra, Zuhorn (b0160) 2013; 7
Neuberg, Kichler (b0205) 2014
Funhoff, van Nostrum, Koning, Schuurmans-Nieuwenbroek, Crommelin, Hennink (b0150) 2004; 5
Richard, Thibault, De Crescenzo, Buschmann, Lavertu (b0200) 2013; 14
Haensler, Szoka (b0105) 1993; 4
T.Merdan, K. Kunath, D.Fischer, J. Kopecek. T. Kissel, Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments, 19 (2002) 140–146.
Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (b0025) 2014; 15
Godbey, Barry, Saggau, Wu, Mikos (b0185) 1999; 51
Forrest, Meister, Koerber, Pack (b0155) 2004; 21
Mo, Sun, Li, Zhang (b0195) 2013; 34
Sahay, Alakhova, Kabanov (b0040) 2010; 145
Selby, Cortez-Jugo, Such, Johnston (b0070) 2017; 9
Bieber, Meissner, Kostin, Niemann, Elsasser (b0190) 2002; 82
Riley, Vermerris (b0020) 2017; 7
Gilleron, Querbes, Zeigerer, Borodovsky, Marsico, Schubert, Manygoats, Seifert, Andree, Stöter (b0060) 2013; 31
Ziebarth, Wang (b0230) 2011; 11
Martens, Remaut, Demeester, De Smedt, Braeckmans (b0055) 2014; 9
Midoux, Monsigny (b0145) 1999; 10
Varkouhi, Scholte, Storm, Haisma (b0075) 2011; 151
Sonawane, Thiagarajah, Verkman (b0210) 2002; 277
Boussif, Lezoualc’h, Zanta, Mergny, Scherman, Demeneix, Behr (b0115) 1995; 92
Guo, Huang (b0035) 2012; 45
Forrest, Pack (b0180) 2002; 6
Liang, Lam (b0080) 2012
Sonawane, Szoka, Verkman (b0120) 2003; 278
Jones, Chen, Ravikrishnan, Rane, Pfeifer (b0010) 2013; 10
Shete, Prabhu, Patravale (b0065) 2014; 14
Pangarkar, Dinh, Mitragotri (b0050) 2012; 162
Behr, Demeneix, Loeffler, Perez-Mutul (b0110) 1989; 86
Benjaminsen, Mattebjerg, Henriksen, Moghimi, Andresen (b0175) 2013; 21
Singh, Maharjan, Park, Jiang, Kang, Choi, Cho (b0125) 2015; 15
Kichler, Leborgne, Coeytaux, Danos (b0170) 2001; 3
Vermeulen, Brans, Samal, Dubruel, Demeester, De Smedt, Remaut, Braeckmans (b0220) 2018; 12
Nguyen, Szoka (b0225) 2012; 45
Tang, Redemann, Szoka (b0235) 1996; 7
Jones (10.1016/j.ejpb.2018.05.034_b0010) 2013; 10
Tang (10.1016/j.ejpb.2018.05.034_b0235) 1996; 7
Benjaminsen (10.1016/j.ejpb.2018.05.034_b0175) 2013; 21
Lächelt (10.1016/j.ejpb.2018.05.034_b0090) 2015; 115
Pack (10.1016/j.ejpb.2018.05.034_b0140) 2000; 67
Yin (10.1016/j.ejpb.2018.05.034_b0025) 2014; 15
Mo (10.1016/j.ejpb.2018.05.034_b0195) 2013; 34
Gottfried (10.1016/j.ejpb.2018.05.034_b0030) 2013
Forrest (10.1016/j.ejpb.2018.05.034_b0155) 2004; 21
Sonawane (10.1016/j.ejpb.2018.05.034_b0120) 2003; 278
Choudhury (10.1016/j.ejpb.2018.05.034_b0240) 2013; 14
Pack (10.1016/j.ejpb.2018.05.034_b0100) 2005; 4
Canton (10.1016/j.ejpb.2018.05.034_b0045) 2012; 41
Rehman (10.1016/j.ejpb.2018.05.034_b0160) 2013; 7
Won (10.1016/j.ejpb.2018.05.034_b0215) 2009; 139
Ziebarth (10.1016/j.ejpb.2018.05.034_b0230) 2011; 11
Pangarkar (10.1016/j.ejpb.2018.05.034_b0050) 2012; 162
Riley (10.1016/j.ejpb.2018.05.034_b0020) 2017; 7
Vermeulen (10.1016/j.ejpb.2018.05.034_b0220) 2018; 12
Godbey (10.1016/j.ejpb.2018.05.034_b0185) 1999; 51
Haensler (10.1016/j.ejpb.2018.05.034_b0105) 1993; 4
Forrest (10.1016/j.ejpb.2018.05.034_b0180) 2002; 6
Richard (10.1016/j.ejpb.2018.05.034_b0200) 2013; 14
Boussif (10.1016/j.ejpb.2018.05.034_b0115) 1995; 92
Guo (10.1016/j.ejpb.2018.05.034_b0035) 2012; 45
Midoux (10.1016/j.ejpb.2018.05.034_b0145) 1999; 10
Neuberg (10.1016/j.ejpb.2018.05.034_b0205) 2014
Selby (10.1016/j.ejpb.2018.05.034_b0070) 2017; 9
Bieber (10.1016/j.ejpb.2018.05.034_b0190) 2002; 82
Friedmann (10.1016/j.ejpb.2018.05.034_b0005) 1972; 175
Funhoff (10.1016/j.ejpb.2018.05.034_b0150) 2004; 5
Martens (10.1016/j.ejpb.2018.05.034_b0055) 2014; 9
Behr (10.1016/j.ejpb.2018.05.034_b0085) 1997; 2
De Smedt (10.1016/j.ejpb.2018.05.034_b0095) 2000; 17
Gilleron (10.1016/j.ejpb.2018.05.034_b0060) 2013; 31
Akinc (10.1016/j.ejpb.2018.05.034_b0130) 2005; 7
Thomas (10.1016/j.ejpb.2018.05.034_b0135) 2002; 99
Shete (10.1016/j.ejpb.2018.05.034_b0065) 2014; 14
Liang (10.1016/j.ejpb.2018.05.034_b0080) 2012
Kichler (10.1016/j.ejpb.2018.05.034_b0170) 2001; 3
Sonawane (10.1016/j.ejpb.2018.05.034_b0210) 2002; 277
Sahay (10.1016/j.ejpb.2018.05.034_b0040) 2010; 145
Nguyen (10.1016/j.ejpb.2018.05.034_b0225) 2012; 45
Singh (10.1016/j.ejpb.2018.05.034_b0125) 2015; 15
Behr (10.1016/j.ejpb.2018.05.034_b0110) 1989; 86
Varkouhi (10.1016/j.ejpb.2018.05.034_b0075) 2011; 151
Ramamoorth (10.1016/j.ejpb.2018.05.034_b0015) 2015; 9
10.1016/j.ejpb.2018.05.034_b0165
References_xml – volume: 15
  start-page: 622
  year: 2015
  end-page: 635
  ident: b0125
  article-title: Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes
  publication-title: Macromol. Biosci.
– volume: 99
  start-page: 14640
  year: 2002
  end-page: 14645
  ident: b0135
  article-title: enhancing polyethylenimine’s delivery of plasmid dna into mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 17
  start-page: 113
  year: 2000
  end-page: 126
  ident: b0095
  article-title: Cationic polymer based gene delivery systems
  publication-title: Pharm. Res.
– volume: 4
  start-page: 581
  year: 2005
  end-page: 593
  ident: b0100
  article-title: Design and development of polymers for gene delivery
  publication-title: Nat. Rev. Drug Discov.
– start-page: 75
  year: 2013
  end-page: 88
  ident: b0030
  article-title: Extracellular and intracellular barriers to non-viral gene transfer
  publication-title: Nov. Gene. Ther. Approach.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 23
  ident: b0070
  article-title: Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 2
  start-page: 34
  year: 1997
  end-page: 36
  ident: b0085
  article-title: The proton sponge: a trick to enter cells the viruses did not exploit
  publication-title: Int. J. Chem.
– volume: 4
  start-page: 372
  year: 1993
  end-page: 379
  ident: b0105
  article-title: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture
  publication-title: Bioconjug. Chem.
– volume: 41
  start-page: 2718
  year: 2012
  end-page: 2739
  ident: b0045
  article-title: Endocytosis at the nanoscale
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 321
  year: 1999
  end-page: 328
  ident: b0185
  article-title: Poly ( ethylenimine ) -mediated transfection: a new paradigm for gene delivery
  publication-title: Inc. J. Biomed. Master Res.
– volume: 115
  start-page: 11043
  year: 2015
  end-page: 11078
  ident: b0090
  article-title: Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond)
  publication-title: Chem. Rev.
– volume: 278
  start-page: 44826
  year: 2003
  end-page: 44831
  ident: b0120
  article-title: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes
  publication-title: J. Biol. Chem.
– volume: 67
  start-page: 217
  year: 2000
  end-page: 223
  ident: b0140
  article-title: Design of imidazole-containing endosomolytic biopolymers for gene delivery
  publication-title: Biotechnol. Bioeng.
– reference: T.Merdan, K. Kunath, D.Fischer, J. Kopecek. T. Kissel, Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments, 19 (2002) 140–146.
– start-page: 429
  year: 2012
  end-page: 456
  ident: b0080
  article-title: Endosomal escape pathways for non-viral nucleic acid delivery systems
  publication-title: Molecular Regulation of Endocytosis
– volume: 151
  start-page: 220
  year: 2011
  end-page: 228
  ident: b0075
  article-title: Endosomal escape pathways for delivery of biologicals
  publication-title: J. Control. Release
– volume: 7
  start-page: 3767
  year: 2013
  end-page: 3777
  ident: b0160
  article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis
  publication-title: ACS Nano
– volume: 175
  start-page: 949
  year: 1972
  end-page: 955
  ident: b0005
  article-title: Gene therapy for human genetic disease?
  publication-title: Science
– volume: 12
  start-page: 2332
  year: 2018
  end-page: 2345
  ident: b0220
  article-title: endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles
  publication-title: ACS Nano
– volume: 7
  start-page: 703
  year: 1996
  end-page: 714
  ident: b0235
  article-title: In vitro gene delivery by degraded polyamidoamine dendrimers
  publication-title: Bioconjug. Chem.
– volume: 7
  start-page: 94
  year: 2017
  ident: b0020
  article-title: recent advances in nanomaterials for gene delivery—a review
  publication-title: Nanomaterials
– volume: 14
  start-page: 3759
  year: 2013
  end-page: 3768
  ident: b0240
  article-title: Characterization of conformation and interaction of gene delivery vector polyethylenimine with phospholipid bilayer at different protonation state
  publication-title: Biomacromolecules
– volume: 145
  start-page: 182
  year: 2010
  end-page: 195
  ident: b0040
  article-title: Endocytosis of nanomedicines
  publication-title: J. Control. Release
– volume: 11
  start-page: 1
  year: 2011
  end-page: 29
  ident: b0230
  article-title: Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations
  publication-title: Biomacromolecules
– volume: 14
  start-page: 1732
  year: 2013
  end-page: 1740
  ident: b0200
  article-title: Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI
  publication-title: Biomacromolecules
– volume: 21
  start-page: 365
  year: 2004
  end-page: 371
  ident: b0155
  article-title: Partial acetylation of polyethylenimine enhances in vitro gene delivery
  publication-title: In Vitro
– volume: 10
  start-page: 4082
  year: 2013
  end-page: 4098
  ident: b0010
  article-title: Overcoming nonviral gene delivery barriers: perspective and future
  publication-title: Mol. Pharm.
– volume: 162
  start-page: 76
  year: 2012
  end-page: 83
  ident: b0050
  article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer
  publication-title: J. Control. Release
– volume: 277
  start-page: 5506
  year: 2002
  end-page: 5513
  ident: b0210
  article-title: Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator. Evidence for chloride accumulation during acidification
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 406
  year: 1999
  end-page: 411
  ident: b0145
  article-title: Efficient gene transfer by histidylated polylysine/pDNA complexes
  publication-title: Bioconjug. Chem.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0015
  article-title: Non viral vectors in gene therapy- an overview
  publication-title: J. Clin. Diagnostic Res.
– volume: 45
  start-page: 971
  year: 2012
  end-page: 979
  ident: b0035
  article-title: Recent advances in non-viral vectors for gene delivery
  publication-title: Acc. Chem. Res.
– volume: 86
  start-page: 6982
  year: 1989
  end-page: 6986
  ident: b0110
  article-title: Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  start-page: 149
  year: 2013
  end-page: 157
  ident: b0175
  article-title: The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH
  publication-title: Mol. Ther.
– volume: 7
  start-page: 657
  year: 2005
  end-page: 663
  ident: b0130
  article-title: Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis
  publication-title: J. Gene. Med.
– year: 2014
  ident: b0205
  article-title: Recent Developments in Nucleic Acid Delivery with Polyethylenimines
– volume: 45
  start-page: 1153
  year: 2012
  end-page: 1162
  ident: b0225
  article-title: Nucleic acid delivery: the missing pieces of the puzzle?
  publication-title: Acc. Chem. Res.
– volume: 92
  start-page: 7297
  year: 1995
  end-page: 7301
  ident: b0115
  article-title: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine
  publication-title: Proc. Natl. Acad. Sci.
– volume: 82
  start-page: 441
  year: 2002
  end-page: 454
  ident: b0190
  article-title: Intracellular route and transcriptional competence of polyethylenimine-DNA complexes
  publication-title: J. Control. Release
– volume: 3
  start-page: 135
  year: 2001
  end-page: 144
  ident: b0170
  article-title: Polyethylenimine-mediated gene delivery: a mechanistic study
  publication-title: J. Gene. Med.
– volume: 15
  start-page: 541
  year: 2014
  end-page: 555
  ident: b0025
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
– volume: 5
  start-page: 32
  year: 2004
  end-page: 39
  ident: b0150
  article-title: Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH
  publication-title: Biomacromolecules
– volume: 34
  start-page: 2773
  year: 2013
  end-page: 2786
  ident: b0195
  article-title: Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids
  publication-title: Biomaterials
– volume: 31
  start-page: 638
  year: 2013
  end-page: 646
  ident: b0060
  article-title: Image-based analysis of lipid nanoparticle–mediated sirna delivery, intracellular trafficking and endosomal escape
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 344
  year: 2014
  end-page: 364
  ident: b0055
  article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act
  publication-title: Nano. Today
– volume: 139
  start-page: 88
  year: 2009
  end-page: 93
  ident: b0215
  article-title: Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes
  publication-title: J. Control. Release
– volume: 14
  start-page: 460
  year: 2014
  end-page: 474
  ident: b0065
  article-title: Endosomal escape: a bottleneck in intracellular delivery
  publication-title: J. Nanosci. Nanotechnol.
– volume: 6
  start-page: 57
  year: 2002
  end-page: 66
  ident: b0180
  article-title: On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design
  publication-title: Mol. Ther.
– volume: 10
  start-page: 4082
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0010
  article-title: Overcoming nonviral gene delivery barriers: perspective and future
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400467x
– volume: 34
  start-page: 2773
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0195
  article-title: Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.030
– volume: 277
  start-page: 5506
  year: 2002
  ident: 10.1016/j.ejpb.2018.05.034_b0210
  article-title: Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator. Evidence for chloride accumulation during acidification
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110818200
– volume: 7
  start-page: 703
  year: 1996
  ident: 10.1016/j.ejpb.2018.05.034_b0235
  article-title: In vitro gene delivery by degraded polyamidoamine dendrimers
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc9600630
– volume: 2
  start-page: 34
  year: 1997
  ident: 10.1016/j.ejpb.2018.05.034_b0085
  article-title: The proton sponge: a trick to enter cells the viruses did not exploit
  publication-title: Int. J. Chem.
– volume: 82
  start-page: 441
  year: 2002
  ident: 10.1016/j.ejpb.2018.05.034_b0190
  article-title: Intracellular route and transcriptional competence of polyethylenimine-DNA complexes
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(02)00129-3
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.ejpb.2018.05.034_b0070
  article-title: Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1452
– volume: 14
  start-page: 460
  year: 2014
  ident: 10.1016/j.ejpb.2018.05.034_b0065
  article-title: Endosomal escape: a bottleneck in intracellular delivery
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.9082
– volume: 21
  start-page: 149
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0175
  article-title: The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.185
– volume: 5
  start-page: 32
  year: 2004
  ident: 10.1016/j.ejpb.2018.05.034_b0150
  article-title: Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH
  publication-title: Biomacromolecules
  doi: 10.1021/bm034041+
– volume: 14
  start-page: 1732
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0200
  article-title: Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI
  publication-title: Biomacromolecules
  doi: 10.1021/bm4000713
– volume: 9
  start-page: 344
  year: 2014
  ident: 10.1016/j.ejpb.2018.05.034_b0055
  article-title: Intracellular delivery of nanomaterials: how to catch endosomal escape in the act
  publication-title: Nano. Today
  doi: 10.1016/j.nantod.2014.04.011
– ident: 10.1016/j.ejpb.2018.05.034_b0165
– volume: 12
  start-page: 2332
  year: 2018
  ident: 10.1016/j.ejpb.2018.05.034_b0220
  article-title: endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07583
– volume: 11
  start-page: 1
  year: 2011
  ident: 10.1016/j.ejpb.2018.05.034_b0230
  article-title: Understanding the protonation behavior of linear polyethylenimine in solutions through Monte Carlo simulations
  publication-title: Biomacromolecules
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.ejpb.2018.05.034_b0015
  article-title: Non viral vectors in gene therapy- an overview
  publication-title: J. Clin. Diagnostic Res.
– volume: 4
  start-page: 372
  year: 1993
  ident: 10.1016/j.ejpb.2018.05.034_b0105
  article-title: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc00023a012
– volume: 45
  start-page: 971
  year: 2012
  ident: 10.1016/j.ejpb.2018.05.034_b0035
  article-title: Recent advances in non-viral vectors for gene delivery
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200151m
– start-page: 75
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0030
  article-title: Extracellular and intracellular barriers to non-viral gene transfer
  publication-title: Nov. Gene. Ther. Approach.
– year: 2014
  ident: 10.1016/j.ejpb.2018.05.034_b0205
– volume: 15
  start-page: 541
  year: 2014
  ident: 10.1016/j.ejpb.2018.05.034_b0025
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3763
– volume: 7
  start-page: 3767
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0160
  article-title: Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis
  publication-title: ACS Nano
  doi: 10.1021/nn3049494
– volume: 45
  start-page: 1153
  year: 2012
  ident: 10.1016/j.ejpb.2018.05.034_b0225
  article-title: Nucleic acid delivery: the missing pieces of the puzzle?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3000162
– volume: 162
  start-page: 76
  year: 2012
  ident: 10.1016/j.ejpb.2018.05.034_b0050
  article-title: Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.05.022
– volume: 31
  start-page: 638
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0060
  article-title: Image-based analysis of lipid nanoparticle–mediated sirna delivery, intracellular trafficking and endosomal escape
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2612
– volume: 7
  start-page: 94
  year: 2017
  ident: 10.1016/j.ejpb.2018.05.034_b0020
  article-title: recent advances in nanomaterials for gene delivery—a review
  publication-title: Nanomaterials
  doi: 10.3390/nano7050094
– volume: 41
  start-page: 2718
  year: 2012
  ident: 10.1016/j.ejpb.2018.05.034_b0045
  article-title: Endocytosis at the nanoscale
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15309b
– volume: 51
  start-page: 321
  year: 1999
  ident: 10.1016/j.ejpb.2018.05.034_b0185
  article-title: Poly ( ethylenimine ) -mediated transfection: a new paradigm for gene delivery
  publication-title: Inc. J. Biomed. Master Res.
  doi: 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.0.CO;2-R
– volume: 17
  start-page: 113
  year: 2000
  ident: 10.1016/j.ejpb.2018.05.034_b0095
  article-title: Cationic polymer based gene delivery systems
  publication-title: Pharm. Res.
  doi: 10.1023/A:1007548826495
– volume: 151
  start-page: 220
  year: 2011
  ident: 10.1016/j.ejpb.2018.05.034_b0075
  article-title: Endosomal escape pathways for delivery of biologicals
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2010.11.004
– volume: 3
  start-page: 135
  year: 2001
  ident: 10.1016/j.ejpb.2018.05.034_b0170
  article-title: Polyethylenimine-mediated gene delivery: a mechanistic study
  publication-title: J. Gene. Med.
  doi: 10.1002/jgm.173
– volume: 92
  start-page: 7297
  year: 1995
  ident: 10.1016/j.ejpb.2018.05.034_b0115
  article-title: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.92.16.7297
– volume: 14
  start-page: 3759
  year: 2013
  ident: 10.1016/j.ejpb.2018.05.034_b0240
  article-title: Characterization of conformation and interaction of gene delivery vector polyethylenimine with phospholipid bilayer at different protonation state
  publication-title: Biomacromolecules
  doi: 10.1021/bm4011408
– volume: 99
  start-page: 14640
  year: 2002
  ident: 10.1016/j.ejpb.2018.05.034_b0135
  article-title: enhancing polyethylenimine’s delivery of plasmid dna into mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.192581499
– volume: 145
  start-page: 182
  year: 2010
  ident: 10.1016/j.ejpb.2018.05.034_b0040
  article-title: Endocytosis of nanomedicines
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2010.01.036
– volume: 7
  start-page: 657
  year: 2005
  ident: 10.1016/j.ejpb.2018.05.034_b0130
  article-title: Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis
  publication-title: J. Gene. Med.
  doi: 10.1002/jgm.696
– volume: 67
  start-page: 217
  year: 2000
  ident: 10.1016/j.ejpb.2018.05.034_b0140
  article-title: Design of imidazole-containing endosomolytic biopolymers for gene delivery
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(20000120)67:2<217::AID-BIT11>3.0.CO;2-Q
– volume: 6
  start-page: 57
  year: 2002
  ident: 10.1016/j.ejpb.2018.05.034_b0180
  article-title: On the kinetics of polyplex endocytic trafficking: implications for gene delivery vector design
  publication-title: Mol. Ther.
  doi: 10.1006/mthe.2002.0631
– volume: 15
  start-page: 622
  year: 2015
  ident: 10.1016/j.ejpb.2018.05.034_b0125
  article-title: Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201400463
– volume: 4
  start-page: 581
  year: 2005
  ident: 10.1016/j.ejpb.2018.05.034_b0100
  article-title: Design and development of polymers for gene delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1775
– volume: 86
  start-page: 6982
  year: 1989
  ident: 10.1016/j.ejpb.2018.05.034_b0110
  article-title: Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.86.18.6982
– volume: 115
  start-page: 11043
  year: 2015
  ident: 10.1016/j.ejpb.2018.05.034_b0090
  article-title: Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond)
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006793
– volume: 175
  start-page: 949
  year: 1972
  ident: 10.1016/j.ejpb.2018.05.034_b0005
  article-title: Gene therapy for human genetic disease?
  publication-title: Science
  doi: 10.1126/science.175.4025.949
– start-page: 429
  year: 2012
  ident: 10.1016/j.ejpb.2018.05.034_b0080
  article-title: Endosomal escape pathways for non-viral nucleic acid delivery systems
– volume: 21
  start-page: 365
  year: 2004
  ident: 10.1016/j.ejpb.2018.05.034_b0155
  article-title: Partial acetylation of polyethylenimine enhances in vitro gene delivery
  publication-title: In Vitro
– volume: 139
  start-page: 88
  year: 2009
  ident: 10.1016/j.ejpb.2018.05.034_b0215
  article-title: Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2009.06.031
– volume: 278
  start-page: 44826
  year: 2003
  ident: 10.1016/j.ejpb.2018.05.034_b0120
  article-title: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308643200
– volume: 10
  start-page: 406
  year: 1999
  ident: 10.1016/j.ejpb.2018.05.034_b0145
  article-title: Efficient gene transfer by histidylated polylysine/pDNA complexes
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc9801070
SSID ssj0004758
Score 2.6438112
SecondaryResourceType review_article
Snippet In non-viral gene therapy, cationic polymers and lipids are frequently used to encapsulate macromolecular therapeutics into nanoparticles. During their journey...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 184
SubjectTerms Cationic polymers
Endosomal escape
Nanomedicine
Non-viral gene therapy
Proton sponge hypothesis
Title The proton sponge hypothesis: Fable or fact?
URI https://dx.doi.org/10.1016/j.ejpb.2018.05.034
https://www.ncbi.nlm.nih.gov/pubmed/29859281
https://www.proquest.com/docview/2049566344
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004758
  issn: 0939-6411
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1873-3441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004758
  issn: 0939-6411
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004758
  issn: 0939-6411
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-3441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004758
  issn: 0939-6411
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004758
  issn: 0939-6411
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXryI-y4RxItTxzZJ03gRGRxGRRFU8BaapTqDdIZZDnPxt_teFwcPevDY9oWWl-Qt9Pu-EHIsk0wp4XjgjE0DzmArGqdMwFMGCVYKkxlsFO8f4u4Lv30Vrw3SrrkwCKusYn8Z04toXd1pVd5sDXu91hP04irmsFcTaMkTiSQ-VP-CNX32OYd5cFmc0YnGAVpXxJkS4-X7Q4PwrqRQ72T8t-T0W_FZJKHOClmuqkd6VX7gKmn4fI2cPJby07MmfZ6zqcZNekIf58LUs3XShMcUhRkGOUVk7Jun77MhUrDGvfEF7SCLig5GFMkOlxvkpXP93O4G1WkJgeVxPAkMt5D7Q8MilkVOeOcT6xizynDvHNQhyhiTuojZMLWpx8QuJfTGVgjDpXJskyzkg9xvE-qd9D4xDMVqeBrFyobcySzkBsqDTMQ7JKzdpG0lJY4nWnzoGjPW1-haja7V50KDa3fI6feYYSmk8ae1qL2vfywHDZH-z3FH9VRp2Cf48yPN_WA6BiNsBWPGwWarnMPv74hUIlSUhLv_fOseWcKrEhe4TxYmo6k_gFplYg6LxXhIFq9u7roPX4hw5vA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOcBlBctjWR7rlRAXGpXEdhzvZYUQVVmgQqJI3Kz4kd2iVVrRcui_Z6ZJqDjAgWs8I1tjex7KfJ8BjlRWaC29iLx1eSQ4XkXrtY1EzjHAKmkLS4XiTT_t3Ys_D_JhCc4bLAy1Vda-v_Lpc29df-nU1uyMh8POHdbiOhV4VzMsyTOll2FFSPTJLVg5u7zq9RfwSDV_ppPkI1KosTNVm1d4HFvq8MrmBJ5cvBef3ss_53Gouw5f6gSSnVVr3IClUH6F49uKgXrWZoMFoGrSZsfsdsFNPduENg4z4mYYlYyaY_8G9m82JhTWZDj5xboEpGKjJ0Z4h99bcN-9GJz3ovrBhMiJNJ1GVjgM_7HlCS8SL4MPmfOcO21F8B5TEW2tzX3CXZy7PFBsVwrLYyelFUp7vg2tclSGb8CCVyFklhNfjciTVLtYeFXEwmKGUMh0F-LGTMbVbOL0qMV_07SNPRoyrSHTmlNp0LS7cPKqM664ND6Ulo31zZsTYdDZf6j3s9kqg1eF_n_kZRg9T1CIqsGUC5TZqfbwdR2JzqROsvj7J2f9Aau9wc21ub7sX-3BGo1UbYL70Jo-PYcDTF2m9rA-mi9t4-mb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proton+sponge+hypothesis%3A+Fable+or+fact%3F&rft.jtitle=European+journal+of+pharmaceutics+and+biopharmaceutics&rft.au=Vermeulen%2C+Lotte+M+P&rft.au=De+Smedt%2C+Stefaan+C&rft.au=Remaut%2C+Katrien&rft.au=Braeckmans%2C+Kevin&rft.date=2018-08-01&rft.issn=1873-3441&rft.eissn=1873-3441&rft.volume=129&rft.spage=184&rft_id=info:doi/10.1016%2Fj.ejpb.2018.05.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-6411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-6411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-6411&client=summon