Associations between microplastic pollution and land use in urban wetland sediments

Microplastic pollution is concerning because it is widespread in aquatic environments and there is growing evidence of negative biological effects. Here, we present one of the first studies to examine microplastic pollution (plastic particles < 1 mm) in urban wetlands and investigate relationship...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 26; no. 22; pp. 22551 - 22561
Main Authors Townsend, Kallie R., Lu, Hsuan-Cheng, Sharley, David J., Pettigrove, Vincent
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-019-04885-w

Cover

More Information
Summary:Microplastic pollution is concerning because it is widespread in aquatic environments and there is growing evidence of negative biological effects. Here, we present one of the first studies to examine microplastic pollution (plastic particles < 1 mm) in urban wetlands and investigate relationships between contamination and urban land use. Sediment samples were collected from 20 independent urban wetlands, each with different types of urban land use within their catchments. Microplastics were observed at all wetlands, with an average abundance of around 46 items/kg of dry sediment. Plastic fragments were the most common type of microplastic, accounting for 68.5% of all microplastics found. Consistent with other studies, microplastic abundance was positively correlated with increased catchment urbanisation. On closer examination, plastic fragments and beads correlated with catchment urbanisation. Fragment abundance also increased in wetlands with catchments that had a higher proportion of industrial land use and decreased in catchments with higher residential densities. This study demonstrates the susceptibility of urban wetlands to microplastic pollution, further highlighting the ubiquitous nature of microplastic pollution. The prevalence of microplastic fragments indicates that plastic litter degradation is a significant source of microplastics in urban environments, especially in industrial areas.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-019-04885-w