Integrated 105 dB SNR, 0.0031% THD+N Class-D Audio Amplifier With Global Feedback and Digital Control in 55 nm CMOS
It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low voltage process technologies. This is primarily attributed to reduced power supply, degraded analog transistor characteristics, including short-...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 50; no. 8; pp. 1764 - 1771 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9200 1558-173X |
DOI | 10.1109/JSSC.2015.2420314 |
Cover
Abstract | It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low voltage process technologies. This is primarily attributed to reduced power supply, degraded analog transistor characteristics, including short-channel effects, increased flicker noise, random telegraph noise, transistor reliability concerns and passive component performance. In this paper, we introduce a global closed-loop mixed-signal architecture incorporating digital control and integrate a fourth-order amplifier prototype in 55 nm CMOS. A systematic approach to analyze, design and compensate the feedback loop in the digital domain is also presented. The versatility of implementing the loop gain poles and zeros digitally attains high gain throughout the audio band and attenuates residual high frequency ripples around the loop, simultaneously accomplishing improvements in THD+N and PSRR. The overall architecture is inherently amenable to implementation in deep-submicron and is therefore compatible with scaled CMOS. The measured prototype achieves a high 105 dBA SNR, 0.0031% THD+N, 92 dB PSRR and 85% efficiency when supplying 1 W into emulated 8 Ω speaker load. This performance is competitive with conventional designs using large feature size precision CMOS or specialized BCD technologies and reports the highest output power (1.5 W) for deep-submicron designs. |
---|---|
AbstractList | It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low voltage process technologies. This is primarily attributed to reduced power supply, degraded analog transistor characteristics, including short-channel effects, increased flicker noise, random telegraph noise, transistor reliability concerns and passive component performance. In this paper, we introduce a global closed-loop mixed-signal architecture incorporating digital control and integrate a fourth-order amplifier prototype in 55 nm CMOS. A systematic approach to analyze, design and compensate the feedback loop in the digital domain is also presented. The versatility of implementing the loop gain poles and zeros digitally attains high gain throughout the audio band and attenuates residual high frequency ripples around the loop, simultaneously accomplishing improvements in THD+N and PSRR. The overall architecture is inherently amenable to implementation in deep-submicron and is therefore compatible with scaled CMOS. The measured prototype achieves a high 105 dBA SNR, 0.0031% THD+N, 92 dB PSRR and 85% efficiency when supplying 1 W into emulated 8 Omega speaker load. This performance is competitive with conventional designs using large feature size precision CMOS or specialized BCD technologies and reports the highest output power (1.5 W) for deep-submicron designs. It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low voltage process technologies. This is primarily attributed to reduced power supply, degraded analog transistor characteristics, including short-channel effects, increased flicker noise, random telegraph noise, transistor reliability concerns and passive component performance. In this paper, we introduce a global closed-loop mixed-signal architecture incorporating digital control and integrate a fourth-order amplifier prototype in 55 nm CMOS. A systematic approach to analyze, design and compensate the feedback loop in the digital domain is also presented. The versatility of implementing the loop gain poles and zeros digitally attains high gain throughout the audio band and attenuates residual high frequency ripples around the loop, simultaneously accomplishing improvements in THD+N and PSRR. The overall architecture is inherently amenable to implementation in deep-submicron and is therefore compatible with scaled CMOS. The measured prototype achieves a high 105 dBA SNR, 0.0031% THD+N, 92 dB PSRR and 85% efficiency when supplying 1 W into emulated 8 Ω speaker load. This performance is competitive with conventional designs using large feature size precision CMOS or specialized BCD technologies and reports the highest output power (1.5 W) for deep-submicron designs. It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low voltage process technologies. This is primarily attributed to reduced power supply, degraded analog transistor characteristics, including short-channel effects, increased flicker noise, random telegraph noise, transistor reliability concerns and passive component performance. In this paper, we introduce a global closed-loop mixed-signal architecture incorporating digital control and integrate a fourth-order amplifier prototype in 55 nm CMOS. A systematic approach to analyze, design and compensate the feedback loop in the digital domain is also presented. The versatility of implementing the loop gain poles and zeros digitally attains high gain throughout the audio band and attenuates residual high frequency ripples around the loop, simultaneously accomplishing improvements in THD+N and PSRR. The overall architecture is inherently amenable to implementation in deep-submicron and is therefore compatible with scaled CMOS. The measured prototype achieves a high 105 dBA SNR, 0.0031% THD+N, 92 dB PSRR and 85% efficiency when supplying 1 W into emulated 8 [Formula Omitted] speaker load. This performance is competitive with conventional designs using large feature size precision CMOS or specialized BCD technologies and reports the highest output power (1.5 W) for deep-submicron designs. |
Author | Kinyua, Martin Ruopeng Wang Soenen, Eric |
Author_xml | – sequence: 1 givenname: Martin surname: Kinyua fullname: Kinyua, Martin organization: TSMC Technol., Inc., Austin, TX, USA – sequence: 2 surname: Ruopeng Wang fullname: Ruopeng Wang organization: TSMC Technol., Inc., Austin, TX, USA – sequence: 3 givenname: Eric surname: Soenen fullname: Soenen, Eric organization: TSMC Technol., Inc., Austin, TX, USA |
BookMark | eNp9kUtr3DAUhUVJoZO0PyB0IwiFQOOpri3J8nLiaV7kAZmEdCdkWU6UaqSJ5Fn031eTCV1k0dXlXr5zuIezi3Z88AahfSBTANL8uFgs2mlJgE1LWpIK6Ac0AcZEAXX1awdNCAFRNCUhn9BuSs95pVTABKVzP5rHqEbTYyAM98d4cX17hMmUZJdv-O5s_v0at06lVMzxbN3bgGfLlbODNRE_2PEJn7rQKYdPjOk7pX9j5Xs8t492zMc2-DEGh63HjGG_xO3VzeIz-jgol8yXt7mH7k9-3rVnxeXN6Xk7uyw05XwsWK9JLYAz0lUGKKclHfqqawZKTWPqulNcd5Vgumy6ctDdQETFeA4BA-FC8GoPHW59VzG8rE0a5dImbZxT3oR1klCDaEpgr-jBO_Q5rKPP30ngTZP_YcAyVW8pHUNK0QxS55Sj3YRU1kkgclOG3JQhN2XItzKyEt4pV9EuVfzzX83XrcYaY_7xNRAKglZ_AUqDkKM |
CODEN | IJSCBC |
CitedBy_id | crossref_primary_10_1109_JSSC_2018_2873613 crossref_primary_10_1109_JSSC_2016_2543704 crossref_primary_10_1109_JSSC_2017_2731812 crossref_primary_10_1109_JSSC_2021_3093309 crossref_primary_10_1109_TPEL_2017_2665476 crossref_primary_10_1088_1674_4926_38_7_074002 crossref_primary_10_1109_TVT_2024_3457782 crossref_primary_10_1109_TPEL_2019_2915542 crossref_primary_10_1109_JSSC_2022_3161136 crossref_primary_10_1109_JSSC_2016_2601600 crossref_primary_10_1109_JSSC_2024_3447771 crossref_primary_10_1109_TIE_2018_2890493 crossref_primary_10_1109_JSSC_2016_2591828 crossref_primary_10_1007_s10470_016_0750_0 |
Cites_doi | 10.1109/4.760369 10.1109/JSSC.2014.2335713 10.1109/JSSC.2004.835820 10.1109/JSSC.2011.2162913 10.1109/JSSC.2005.848147 10.1109/ISCAS.2004.1328375 10.1109/JSSC.2010.2047426 10.1109/5.542410 10.1109/JSSC.2005.856266 10.1109/JSSC.2003.813238 10.1109/JSSC.2012.2225762 10.1109/ISSCC.2008.4523244 10.1109/ISSCC.2009.4977501 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/JSSC.2015.2420314 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-173X |
EndPage | 1771 |
ExternalDocumentID | 3761787501 10_1109_JSSC_2015_2420314 7104184 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION RIG 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c466t-5dc0781650b3e146424fd3b9f44e9e77ba6cb385c29b2fcbf083561051f068863 |
IEDL.DBID | RIE |
ISSN | 0018-9200 |
IngestDate | Thu Jul 10 23:50:01 EDT 2025 Mon Jun 30 10:20:35 EDT 2025 Tue Jul 01 01:33:25 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Tue Aug 26 16:39:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c466t-5dc0781650b3e146424fd3b9f44e9e77ba6cb385c29b2fcbf083561051f068863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1699466515 |
PQPubID | 85482 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_JSSC_2015_2420314 proquest_miscellaneous_1718921586 crossref_primary_10_1109_JSSC_2015_2420314 ieee_primary_7104184 proquest_journals_1699466515 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of solid-state circuits |
PublicationTitleAbbrev | JSSC |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | wang (ref7) 2010; 45 ref12 norsworthy (ref11) 1997 ref15 ref14 ref20 ref2 ref1 forzley (ref8) 2009 ref16 ref19 ref18 samala (ref6) 2010 mouton (ref9) 2009 (ref17) 2006 ref4 ref3 kinyua (ref10) 2014 ref5 matamura (ref13) 2009 |
References_xml | – year: 2009 ident: ref9 article-title: Digital control of a PWM switching amplifier with global feedback publication-title: 37th International Audio Engineering Society Conference – ident: ref15 doi: 10.1109/4.760369 – year: 2006 ident: ref17 article-title: Spread-spectrum-modulation mode minimizes electromagnetic interference in class-D amplifiers publication-title: Maxim Integrated Products Inc APP 3881 – start-page: 86 year: 2010 ident: ref6 article-title: 45nm CMOS <formula formulatype="inline"><tex Notation="TeX">$8~\Omega$</tex></formula> class-D audio driver with 79% efficiency and 100dB SNR publication-title: IEEE ISSCC Dig Tech Papers – ident: ref20 doi: 10.1109/JSSC.2014.2335713 – ident: ref2 doi: 10.1109/JSSC.2004.835820 – ident: ref14 doi: 10.1109/JSSC.2011.2162913 – ident: ref4 doi: 10.1109/JSSC.2005.848147 – ident: ref12 doi: 10.1109/ISCAS.2004.1328375 – volume: 45 start-page: 1427 year: 2010 ident: ref7 article-title: A 120-dB dynamic range 400 mW class-D speaker driver with fourth-order PWM modulator publication-title: IEEE J Solid-State Circuits doi: 10.1109/JSSC.2010.2047426 – year: 1997 ident: ref11 publication-title: Delta-Sigma Data Converters Theory Design and Simulation – year: 2009 ident: ref8 article-title: A scalable class D audio amplifier for low power applications publication-title: 37th International Audio Engineering Society Conference – year: 2014 ident: ref10 article-title: A 105dBA SNR, 0.0031% <formula formulatype="inline"> <tex Notation="TeX">${\rm THD}+{\rm N}$</tex></formula> filterless class-D amplifier with discrete time feedback control in 55nm CMOS publication-title: Proc IEEE Custom Integrated Circuits Conf (CICC) – ident: ref16 doi: 10.1109/5.542410 – ident: ref3 doi: 10.1109/JSSC.2005.856266 – ident: ref1 doi: 10.1109/JSSC.2003.813238 – ident: ref18 doi: 10.1109/JSSC.2012.2225762 – start-page: 1177 year: 2009 ident: ref13 article-title: Filterless multi-level delta-sigma class-D amplifier for portable applications publication-title: Proc IEEE ISCAS – ident: ref5 doi: 10.1109/ISSCC.2008.4523244 – ident: ref19 doi: 10.1109/ISSCC.2009.4977501 |
SSID | ssj0014481 |
Score | 2.2519953 |
Snippet | It is traditionally challenging to implement higher-order PWM closed-loop Class-D audio amplifiers using analog intensive techniques in deep-submicron, low... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1764 |
SubjectTerms | Amplifiers Audio power amplifier Batteries Capacitors class-D amplifier CMOS Control systems Control theory Design engineering Digital Gain Noise Noise levels power supply rejection ratio (PSRR) Product design Pulse duration modulation Pulse width modulation pulse-width modulation (PWM) Switches total harmonic distortion and noise ({\rm THD}+{\rm N}) Transistors |
Title | Integrated 105 dB SNR, 0.0031% THD+N Class-D Audio Amplifier With Global Feedback and Digital Control in 55 nm CMOS |
URI | https://ieeexplore.ieee.org/document/7104184 https://www.proquest.com/docview/1699466515 https://www.proquest.com/docview/1718921586 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21PcGBAgURKGiQ4AJ1ase7G_sYEqJQKUEirejN8u6OISp1ELUv_HpmbMfiS4ibJa_tld7uzlvP7HsAL9JCKU8qCsaJ8YHKfRjkcZwHiYmIYlOQbuSLlyuzuFBnl_pyD076szBE1BSf0VAum1y-37pafpWdcjRUvCPZh30eZu1ZrT5jwNuM1h0v4gnM0HcZzChMT8_W66kUcekhxyORa_8lBjWmKn-sxE14mR_CctextqrkalhXdui-_6bZ-L89vwt3Op6Jk3Zg3IM9Ku_D7Z_UB4_g5t1OKsIj8x_0b3C9-nCCUoUWRy_xfDF7vcLGNTOY4aT2my1OpAC94FCKHzfVZ2wdA3DOIdDm7grz0uNs80mMSHDaFsHjpkStsbzG6fL9-gFczN-eTxdB58EQOGVMFWjvRA6IeZyNiVdVNVKFj61ATCmNxzY3zsaJdqPUjgpnC6F0TMl0VIidjYkfwkG5LekRoFbMTkiHReidYqKWjqxNck2WCX7iIzWAcIdK5jqBcvHJ-JI1G5UwzQTITIDMOiAH8Kp_5GurzvGvxkcCTN-ww2QAxzvos27-3mSRSUV4n8neAJ73t3nmSTolL2lbcxsO6ykzpsQ8_vubn8At-X5bLngMB9W3mp4yhanss2bs_gBGL-YY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9gA9lEJBBEoZJLhAndrx7sY-hoQoLU2QSCp6s7wfbqMWp6L2hV_PjO1YFBDiZtlra6W3u_PWM_sewJs4E8I6EXj9SFlPpNb30jBMvUgFzoUqc7KSL57O1ORMnJzL8w04bM_COOeq4jPX5csql29XpuRfZUcUDQXtSO7BlqRdRVSf1mpzBnSr9scLaAoT-E0OM_Djo5P5fMhlXLJLEYkF2-9EocpW5Y-1uAow44cwXXetriu56paF7pofv6k2_m_fd2GnYZo4qIfGI9hw-WPY_kV_cA9uj9diERaJAaH9gPPZl0PkOrQweIuLyej9DCvfTG-Eg9IuVzjgEvSMgil-XRaXWHsG4JiCoE7NFaa5xdHygq1IcFiXweMyRykx_4bD6ef5Ezgbf1wMJ17jwuAZoVThSWtYEIiYnA4drauiJzIbagbZxa7f16kyOoyk6cW6lxmdMakjUiaDjA1tVPgUNvNV7p4BSkH8xEk_860RRNXintZRKp0mih_ZQHTAX6OSmEainJ0yrpNqq-LHCQOZMJBJA2QH3rWv3NT6HP9qvMfAtA0bTDqwv4Y-aWbwbRKomKX3ie514HX7mOYeJ1TS3K1KakOBPSbOFKnnf__yK7g_WUxPk9Pj2acX8ID7UhcP7sNm8b10L4nQFPqgGsc_AZEM6Ws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+105+dB+SNR%2C+0.0031%25+THD%2BN+Class-D+Audio+Amplifier+With+Global+Feedback+and+Digital+Control+in+55+nm+CMOS&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.date=2015-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=50&rft.issue=8&rft.spage=1764&rft_id=info:doi/10.1109%2FJSSC.2015.2420314&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3761787501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |